{"title":"Adsorption and desorption studies of Carica papaya stem activated with zinc chloride for mining wastewater treatment","authors":"Ezekiel A Adetoro, Samson O Ojoawo, AM Salman","doi":"10.17159/wsa/2022.v48.i2.3903","DOIUrl":null,"url":null,"abstract":"The adsorption of eight selected potentially toxic metal ions from actual mining wastewater obtained from Igbeti, Nigeria, was established using activated carbon chemically prepared from Carica papaya stem with zinc chloride (CPSAC-ZnCl2) as activating agent. Characterization of the prepared CPSAC-ZnCl2 sample for surface morphology and functional groups was done by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy, respectively. An atomic absorption spectrophotometer (AAS) was utilized for characterization of the selected metals in the mining wastewater. Batch adsorption and desorption studies were conducted on removal of the metals from the sample using CPSAC-ZnCl2. The data obtained were fitted to isotherm (Freundlich and Langmuir); kinetic (pseudo-second-order and intra-particle diffusion) and thermodynamic (standard enthalpy change – ΔH°, entropy change – ΔS° and free energy change – ΔG°) models. These were considered under two error functions (sum of absolute errors – SAE, coefficient of determination – R2) of linear and non-linear regression analyses. The SEM micrograph revealed that the CPSAC-ZnCl2 sample was 2.0–50.0 nm with FTIR spectra absorption peaks ranging from 746.2 to 3 987.0 cm-1. The initial concentrations of selected metals in the wastewater varied from 5.7 to 756.5 mg/L. The adsorbent dosage, agitation rate, contact time, pH and temperature for optimum condition of CPSAC-ZnCl2 were 0.6 g, 150.0 r/min, 60 min, pH of 7.0 and 30°C, respectively. The selected metals’ adsorption onto CPSAC-ZnCl2 followed Freundlich and Langmuir isotherm models pseudo-second-order kinetics with intra-particle diffusion mechanism. The ΔH°, ΔS° and ΔG° for the processes were 134.5, 64.5 and 22 012.0 kJ/mol, respectively. The adsorbent achieved an adsorption efficiency of above 95.0%, and is thus recommended for industrial application in remediating potentially toxic metals from wastewater. \n ","PeriodicalId":23623,"journal":{"name":"Water SA","volume":"28 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water SA","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.17159/wsa/2022.v48.i2.3903","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 4
Abstract
The adsorption of eight selected potentially toxic metal ions from actual mining wastewater obtained from Igbeti, Nigeria, was established using activated carbon chemically prepared from Carica papaya stem with zinc chloride (CPSAC-ZnCl2) as activating agent. Characterization of the prepared CPSAC-ZnCl2 sample for surface morphology and functional groups was done by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy, respectively. An atomic absorption spectrophotometer (AAS) was utilized for characterization of the selected metals in the mining wastewater. Batch adsorption and desorption studies were conducted on removal of the metals from the sample using CPSAC-ZnCl2. The data obtained were fitted to isotherm (Freundlich and Langmuir); kinetic (pseudo-second-order and intra-particle diffusion) and thermodynamic (standard enthalpy change – ΔH°, entropy change – ΔS° and free energy change – ΔG°) models. These were considered under two error functions (sum of absolute errors – SAE, coefficient of determination – R2) of linear and non-linear regression analyses. The SEM micrograph revealed that the CPSAC-ZnCl2 sample was 2.0–50.0 nm with FTIR spectra absorption peaks ranging from 746.2 to 3 987.0 cm-1. The initial concentrations of selected metals in the wastewater varied from 5.7 to 756.5 mg/L. The adsorbent dosage, agitation rate, contact time, pH and temperature for optimum condition of CPSAC-ZnCl2 were 0.6 g, 150.0 r/min, 60 min, pH of 7.0 and 30°C, respectively. The selected metals’ adsorption onto CPSAC-ZnCl2 followed Freundlich and Langmuir isotherm models pseudo-second-order kinetics with intra-particle diffusion mechanism. The ΔH°, ΔS° and ΔG° for the processes were 134.5, 64.5 and 22 012.0 kJ/mol, respectively. The adsorbent achieved an adsorption efficiency of above 95.0%, and is thus recommended for industrial application in remediating potentially toxic metals from wastewater.
期刊介绍:
WaterSA publishes refereed, original work in all branches of water science, technology and engineering. This includes water resources development; the hydrological cycle; surface hydrology; geohydrology and hydrometeorology; limnology; salinisation; treatment and management of municipal and industrial water and wastewater; treatment and disposal of sewage sludge; environmental pollution control; water quality and treatment; aquaculture in terms of its impact on the water resource; agricultural water science; etc.
Water SA is the WRC’s accredited scientific journal which contains original research articles and review articles on all aspects of water science, technology, engineering and policy. Water SA has been in publication since 1975 and includes articles from both local and international authors. The journal is issued quarterly (4 editions per year).