{"title":"COMPUTATIONAL STUDIES OF HELICOPTER AERODYNAMICS","authors":"M. Ilie, A. Semenescu","doi":"10.56082/annalsarscieng.2023.1.54","DOIUrl":null,"url":null,"abstract":"The present research concerns the helicopter aerodynamics and the blade-vortex interaction phenomenon. The computational studies are carried out using the large-eddy simulation approach for subsonic incompressible flow of Reynolds number Re=1.3x106. The helicopter aerodynamics is dominated by the blade-vortex interaction (BVI) phenomenon which is responsible for noise and vibrations. During the helicopter flight, a tip-vortex filament is formed and its interaction with the advancing blade causes the blade-vortex interaction phenomenon. The study shows that the blade-vortex interaction causes oscillations of the aerodynamic coefficients. Due to the turbulence phenomenon, the oscillations exhibit a non-linear behaviour.","PeriodicalId":31755,"journal":{"name":"Annals Series on engineering sciences Academy of Romanian Scientists","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals Series on engineering sciences Academy of Romanian Scientists","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56082/annalsarscieng.2023.1.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The present research concerns the helicopter aerodynamics and the blade-vortex interaction phenomenon. The computational studies are carried out using the large-eddy simulation approach for subsonic incompressible flow of Reynolds number Re=1.3x106. The helicopter aerodynamics is dominated by the blade-vortex interaction (BVI) phenomenon which is responsible for noise and vibrations. During the helicopter flight, a tip-vortex filament is formed and its interaction with the advancing blade causes the blade-vortex interaction phenomenon. The study shows that the blade-vortex interaction causes oscillations of the aerodynamic coefficients. Due to the turbulence phenomenon, the oscillations exhibit a non-linear behaviour.