R-GCN Based Function Inference for Gate-level Netlist

Q4 Engineering
M. Amagasaki, Hiroki Oyama, Yuichiro Fujishiro, M. Iida, Hiroaki Yasuda, Hiroto Ito
{"title":"R-GCN Based Function Inference for Gate-level Netlist","authors":"M. Amagasaki, Hiroki Oyama, Yuichiro Fujishiro, M. Iida, Hiroaki Yasuda, Hiroto Ito","doi":"10.2197/ipsjtsldm.13.69","DOIUrl":null,"url":null,"abstract":": Graph neural networks are a type of deep-learning model for classification of graph domains. To infer arithmetic functions in a netlist, we applied relational graph convolutional networks (R-GCN), which can directly treat relations between nodes and edges. However, because original R-GCN supports only for node level labeling, it cannot be directly used to infer set of functions in a netlist. In this paper, by considering the distribution of labels for each node, we show a R-GCN based function inference method and data augmentation technique for netlist having multi- ple functions. According to our result, 91.4% accuracy is obtained from 1,000 training data, thus demonstrating that R-GCN-based methods can be e ff ective for graphs with multiple functions.","PeriodicalId":38964,"journal":{"name":"IPSJ Transactions on System LSI Design Methodology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on System LSI Design Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtsldm.13.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

: Graph neural networks are a type of deep-learning model for classification of graph domains. To infer arithmetic functions in a netlist, we applied relational graph convolutional networks (R-GCN), which can directly treat relations between nodes and edges. However, because original R-GCN supports only for node level labeling, it cannot be directly used to infer set of functions in a netlist. In this paper, by considering the distribution of labels for each node, we show a R-GCN based function inference method and data augmentation technique for netlist having multi- ple functions. According to our result, 91.4% accuracy is obtained from 1,000 training data, thus demonstrating that R-GCN-based methods can be e ff ective for graphs with multiple functions.
基于R-GCN的门级网表函数推理
图神经网络是一种用于图域分类的深度学习模型。为了在网络表中推断算术函数,我们采用关系图卷积网络(R-GCN),它可以直接处理节点和边之间的关系。但是,由于原始的R-GCN只支持节点级标注,因此不能直接用于推断网表中的函数集。本文在考虑节点标签分布的基础上,提出了一种基于R-GCN的多函数网表函数推理方法和数据增强技术。根据我们的结果,1000个训练数据的准确率达到91.4%,这表明基于r - gcn的方法可以有效地处理具有多个函数的图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IPSJ Transactions on System LSI Design Methodology
IPSJ Transactions on System LSI Design Methodology Engineering-Electrical and Electronic Engineering
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信