Four results on the complexity of VLSI computations

Thomas Lengauer, K. Mehlhorn
{"title":"Four results on the complexity of VLSI computations","authors":"Thomas Lengauer, K. Mehlhorn","doi":"10.22028/D291-26447","DOIUrl":null,"url":null,"abstract":"We present four results on the complexity of VLSI computations: a) We further justify the Boolean circuit model [Vu, Sa, LS] by showing that it is able to model multi-directional VLSI devices (e.g. pass transistors, pre-charged bus drivers). b) We prove a general cutting theorem for compact regions in R^{d} (d\\geq2) that allows us to drop the convexity assumption in lower bound proofs based on the crossing sequence argument. c) We exhibit an \\Omega(n^{1/3}) asymptotically tight lower bound on the area of strongly where-oblivious chips for transitive functions. d) We prove a lower bound on the switching energy needed for computing transitive functions.","PeriodicalId":7334,"journal":{"name":"Advances in Computing Research","volume":"93 1","pages":"1-22"},"PeriodicalIF":0.0000,"publicationDate":"1983-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computing Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22028/D291-26447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We present four results on the complexity of VLSI computations: a) We further justify the Boolean circuit model [Vu, Sa, LS] by showing that it is able to model multi-directional VLSI devices (e.g. pass transistors, pre-charged bus drivers). b) We prove a general cutting theorem for compact regions in R^{d} (d\geq2) that allows us to drop the convexity assumption in lower bound proofs based on the crossing sequence argument. c) We exhibit an \Omega(n^{1/3}) asymptotically tight lower bound on the area of strongly where-oblivious chips for transitive functions. d) We prove a lower bound on the switching energy needed for computing transitive functions.
关于VLSI计算复杂度的四个结果
我们提出了关于VLSI计算复杂性的四个结果:a)我们进一步证明了布尔电路模型[Vu, Sa, LS],表明它能够模拟多向VLSI器件(例如,通过晶体管,预充电总线驱动器)。b)我们在R^{d (d}\geq 2)中证明了紧域的一般切割定理,该定理允许我们放弃基于交叉序列论证的下界证明中的凸性假设。c)我们在传递函数的强无关芯片的面积上给出了\Omega (n^{1/3})渐近紧下界。d)证明了计算传递函数所需的开关能量的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信