{"title":"Adaptive survival mechanism to glucose restrictions","authors":"N. Djouder","doi":"10.18632/oncoscience.332","DOIUrl":null,"url":null,"abstract":"Glucose is partly metabolized through the glucose sensing hexosamine biosynthetic pathway (HBP) leading to the formation of an end product called acetylated amino sugar nucleotide uridine 5'-diphospho-N-acetylglucosamine (UDP-GlcNAc). UDP-GlcNAC serves as a donor substrate during O-GlcNAcylation (O-linked β-N-acetylglucosamine or O-GlcNAc) [1]. Serine or threonine residues of nuclear and cytoplasmic proteins are directly O-GlcNAcylated, competing with phosphorylation. O-GlcNAcylation is catalyzed by one unique enzyme called O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT). O-GlcNAcylation is cleaved and removed by another one enzyme called N-acetyl-β-D-glucosaminidase (OGA) [1]. The existence of single and unique enzymes (OGT and OGA) acting on various different substrates suggest that enzyme activity can be modulated by binding partners in response to glucose levels [1]. O-GlcNAcylation levels are very dynamic and cycles rapidly, fluctuating in response to glucose concentrations influencing cell signaling pathways [1]. O-GlcNAcylation is thus relevant to various chronic human diseases such as diabetes, cardiovascular and neurodegenerative disorders and cancer. For example, OGT promotes aneuploidy, regulates cell-cycling via HCF-1 cleavage, and participates in regulatory links between metabolic changes and carcinogenesis [2]. Changes in OGA or OGT activity and hence, in O-GlcNAcylation levels may occur in human breast cancer and hepatocellular carcinoma (HCC) tissues [1]. The oncoprotein c-MYC is also O-GlcNAcylated. c-MYC protein is very unstable; its levels and activity are regulated by ubiquitination and proteasomal degradation, initiated by its phosphorylation at Thr-58 by GSK3β. Thr-58 is an OGT target which regulates c-MYC stability. O-GlcNAcylation at Thr-58 stabilizes c-MYC, promoting tumorigenesis [1]. Unconventional prefoldin RPB5 interactor (URI) binds and modulates OGT activity in response to glucose concentrations. In presence of glucose, URI, OGT and protein phosphatase 1 gamma (PP1γ) form a heterotrimeric complex. Glucose deprivation induces anaplerotic reactions, increasing ATP/cAMP levels, thereby activating PKA which in turn, phosphorylates URI at Ser-371. Phosphorylated URI frees PP1γ from the heterotrimeric complex and, URI becomes a potent inhibitor of OGT [1]. PKA reportedly forms a mitochondrial complex with PP1 catalytic units and the pro-apoptotic Bcl-2-associated death promoter (BAD) that influences glucose homeostasis [3]. Thus, URI/OGT/PP1γ complex may integrate glucose metabolism, possibly through a mitochondrial supra-molecular complex including PKA and BAD [3,4]. Abnormal glucose metabolism and BAD requirement in glucose deprivation-induced death is reported in Bad knockout and non-phosphorylatable BAD(3SA) knockin mice [3,5]. BAD is thus an apoptotic sentinel that monitors glucose signaling. Notably, OGT overexpression in a transgenic mouse model yields a type 2 diabetes (T2D) phenotype with insulin resistance and hyperleptinemia [6]. Additionally, …","PeriodicalId":94164,"journal":{"name":"Oncoscience","volume":"16 1","pages":"302 - 303"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/oncoscience.332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Glucose is partly metabolized through the glucose sensing hexosamine biosynthetic pathway (HBP) leading to the formation of an end product called acetylated amino sugar nucleotide uridine 5'-diphospho-N-acetylglucosamine (UDP-GlcNAc). UDP-GlcNAC serves as a donor substrate during O-GlcNAcylation (O-linked β-N-acetylglucosamine or O-GlcNAc) [1]. Serine or threonine residues of nuclear and cytoplasmic proteins are directly O-GlcNAcylated, competing with phosphorylation. O-GlcNAcylation is catalyzed by one unique enzyme called O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT). O-GlcNAcylation is cleaved and removed by another one enzyme called N-acetyl-β-D-glucosaminidase (OGA) [1]. The existence of single and unique enzymes (OGT and OGA) acting on various different substrates suggest that enzyme activity can be modulated by binding partners in response to glucose levels [1]. O-GlcNAcylation levels are very dynamic and cycles rapidly, fluctuating in response to glucose concentrations influencing cell signaling pathways [1]. O-GlcNAcylation is thus relevant to various chronic human diseases such as diabetes, cardiovascular and neurodegenerative disorders and cancer. For example, OGT promotes aneuploidy, regulates cell-cycling via HCF-1 cleavage, and participates in regulatory links between metabolic changes and carcinogenesis [2]. Changes in OGA or OGT activity and hence, in O-GlcNAcylation levels may occur in human breast cancer and hepatocellular carcinoma (HCC) tissues [1]. The oncoprotein c-MYC is also O-GlcNAcylated. c-MYC protein is very unstable; its levels and activity are regulated by ubiquitination and proteasomal degradation, initiated by its phosphorylation at Thr-58 by GSK3β. Thr-58 is an OGT target which regulates c-MYC stability. O-GlcNAcylation at Thr-58 stabilizes c-MYC, promoting tumorigenesis [1]. Unconventional prefoldin RPB5 interactor (URI) binds and modulates OGT activity in response to glucose concentrations. In presence of glucose, URI, OGT and protein phosphatase 1 gamma (PP1γ) form a heterotrimeric complex. Glucose deprivation induces anaplerotic reactions, increasing ATP/cAMP levels, thereby activating PKA which in turn, phosphorylates URI at Ser-371. Phosphorylated URI frees PP1γ from the heterotrimeric complex and, URI becomes a potent inhibitor of OGT [1]. PKA reportedly forms a mitochondrial complex with PP1 catalytic units and the pro-apoptotic Bcl-2-associated death promoter (BAD) that influences glucose homeostasis [3]. Thus, URI/OGT/PP1γ complex may integrate glucose metabolism, possibly through a mitochondrial supra-molecular complex including PKA and BAD [3,4]. Abnormal glucose metabolism and BAD requirement in glucose deprivation-induced death is reported in Bad knockout and non-phosphorylatable BAD(3SA) knockin mice [3,5]. BAD is thus an apoptotic sentinel that monitors glucose signaling. Notably, OGT overexpression in a transgenic mouse model yields a type 2 diabetes (T2D) phenotype with insulin resistance and hyperleptinemia [6]. Additionally, …