Integrable Systems on a Sphere, an Ellipsoid and a Hyperboloid

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Andrey V. Tsiganov
{"title":"Integrable Systems on a Sphere, an Ellipsoid and a Hyperboloid","authors":"Andrey V. Tsiganov","doi":"10.1134/S1560354723520088","DOIUrl":null,"url":null,"abstract":"<div><p>Affine transformations in Euclidean space generate a correspondence between integrable systems\non cotangent bundles to a sphere, ellipsoid and hyperboloid embedded in <span>\\(R^{n}\\)</span>. Using this\ncorrespondence and the suitable coupling constant transformations, we can get real integrals of motion in the hyperboloid case starting with real integrals of motion in the sphere case. We discuss a few such integrable systems with invariants which are cubic, quartic and sextic polynomials in momenta.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"28 6","pages":"805 - 821"},"PeriodicalIF":0.8000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354723520088","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Affine transformations in Euclidean space generate a correspondence between integrable systems on cotangent bundles to a sphere, ellipsoid and hyperboloid embedded in \(R^{n}\). Using this correspondence and the suitable coupling constant transformations, we can get real integrals of motion in the hyperboloid case starting with real integrals of motion in the sphere case. We discuss a few such integrable systems with invariants which are cubic, quartic and sextic polynomials in momenta.

Abstract Image

球面、椭球面和超抛物面上的积分系统
欧几里得空间的仿射变换产生了球体、椭圆体和嵌入(R^{n}\)的双曲面的余切束上的可积分系统之间的对应关系。利用这种对应关系和合适的耦合常数变换,我们可以从球面的实运动积分出发,得到双曲面的实运动积分。我们讨论了几个这样的可积分系统,它们的不变式是矩的三次、四次和六次多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信