An implementation of SLAM using ROS and Arduino

A. Ibanez, Renxi Qiu, Dayou Li
{"title":"An implementation of SLAM using ROS and Arduino","authors":"A. Ibanez, Renxi Qiu, Dayou Li","doi":"10.1109/3M-NANO.2017.8286298","DOIUrl":null,"url":null,"abstract":"This paper aims to explore the Simultaneous Localization and Mapping (SLAM) problem in the context of implementation using the Robot Operating System (ROS) framework and the Arduino technology. The implementation of an inexpensive differential drive robot for SLAM is detailed and verified by mapping experiments conducted within domestic environments. Furthermore, a modest, yet convenient, theoretical explanation of the algorithm (Rao-Blackwellization particle filter) behind the platform is also presented. Overall, this report leads to a simple and cost effective way — including a code base and guidelines — to create robots for 2D mapping using modern technologies such as ROS.","PeriodicalId":6582,"journal":{"name":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"12 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2017.8286298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper aims to explore the Simultaneous Localization and Mapping (SLAM) problem in the context of implementation using the Robot Operating System (ROS) framework and the Arduino technology. The implementation of an inexpensive differential drive robot for SLAM is detailed and verified by mapping experiments conducted within domestic environments. Furthermore, a modest, yet convenient, theoretical explanation of the algorithm (Rao-Blackwellization particle filter) behind the platform is also presented. Overall, this report leads to a simple and cost effective way — including a code base and guidelines — to create robots for 2D mapping using modern technologies such as ROS.
基于ROS和Arduino的SLAM实现
本文旨在探讨在机器人操作系统(ROS)框架和Arduino技术实现背景下的同步定位和地图绘制(SLAM)问题。通过在国内环境中进行的测绘实验,详细介绍了一种用于SLAM的廉价差动驱动机器人的实现和验证。此外,对平台背后的算法(rao - blackwell化粒子滤波)也给出了一个适度但方便的理论解释。总体而言,本报告提供了一种简单且经济有效的方法,包括代码库和指南,可以使用ROS等现代技术创建用于2D绘图的机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信