N. J. Limbaga, K. L. Mallari, N. R. Yeung, C. Oppus
{"title":"A Mixed Cloud-and-Embedded-based Approach with Machine Learning Towards the Development of a Fall Monitoring System","authors":"N. J. Limbaga, K. L. Mallari, N. R. Yeung, C. Oppus","doi":"10.1109/ECTIDAMTNCON57770.2023.10139738","DOIUrl":null,"url":null,"abstract":"The ability to monitor falls, especially for the elderly, deems to be a crucial task to provide quality and timely healthcare response. However, there have been minimal efforts in centralizing such activity for efficient hospital management. This paper presents the development of a full-stack fall monitoring system with edge computing and machine learning technologies. Using a 3-axis accelerometer of a smartphone, motion data is collected and directly sent to an edge computing platform wherein a shallow neural network is directly trained to classify the motion data into positional states: stable, falling sidewards, falling flat, and standing up. A confusion matrix is presented to evaluate the performance of the neural network model, both in training and in real time. A cloud-based approach using ReactJS for front-end integration and Firebase's Cloud Firestore with NodeJS embedded capabilities for real-time data storage and embedded classification is implemented.","PeriodicalId":38808,"journal":{"name":"Transactions on Electrical Engineering, Electronics, and Communications","volume":"65 Suppl 1 1","pages":"203-208"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Electrical Engineering, Electronics, and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTIDAMTNCON57770.2023.10139738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to monitor falls, especially for the elderly, deems to be a crucial task to provide quality and timely healthcare response. However, there have been minimal efforts in centralizing such activity for efficient hospital management. This paper presents the development of a full-stack fall monitoring system with edge computing and machine learning technologies. Using a 3-axis accelerometer of a smartphone, motion data is collected and directly sent to an edge computing platform wherein a shallow neural network is directly trained to classify the motion data into positional states: stable, falling sidewards, falling flat, and standing up. A confusion matrix is presented to evaluate the performance of the neural network model, both in training and in real time. A cloud-based approach using ReactJS for front-end integration and Firebase's Cloud Firestore with NodeJS embedded capabilities for real-time data storage and embedded classification is implemented.