F. Boyom-Tatchemo, F. Devred, E. Acayanka, G. Kamgang-Youbi, S. Nzali, S. Laminsi, E. Gaigneaux
{"title":"Effect of cation insertion on the stability of gliding arc plasma-precipitated mesoporous MnO2 dye bleaching catalysts","authors":"F. Boyom-Tatchemo, F. Devred, E. Acayanka, G. Kamgang-Youbi, S. Nzali, S. Laminsi, E. Gaigneaux","doi":"10.1557/s43578-023-01129-z","DOIUrl":null,"url":null,"abstract":"α-MnO2 and γ-MnO2 polymorphs were, respectively, obtained from the plasma precipitation of KMnO4 and Mn(CH3COO)3⋅2H2O precursors. The obtained powders were calcined at 150 °C, 210 °C and 400 °C, and characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), nitrogen physisorption and Scanning electron microscopy (SEM). As a result, the calcination does not significantly affect textural properties and crystalline structure of the α-MnO2, while γ-MnO2 is transformed into β-MnO2 for temperatures above 400 °C. The thermal stability α-MnO2 is due to the K+ ions insertion in its 4.6 Å × 4.6 Å tunnels and corroborated the catalytic performance of 100, 98, 98 and 97% compared to 71, 54, 52 and 48% for γ-MnO2 after four successive reuse cycles on Tartrazine Yellow dye. The insertion of cationic species (K+, Na+, Mg2+) into the structure of MnO2 reinforces its crystalline structure and promotes the formation of powerful oxidizing species through oxygen vacant sites.","PeriodicalId":14079,"journal":{"name":"International Journal of Materials Research","volume":"90 1","pages":"4144 - 4156"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-023-01129-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
α-MnO2 and γ-MnO2 polymorphs were, respectively, obtained from the plasma precipitation of KMnO4 and Mn(CH3COO)3⋅2H2O precursors. The obtained powders were calcined at 150 °C, 210 °C and 400 °C, and characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), nitrogen physisorption and Scanning electron microscopy (SEM). As a result, the calcination does not significantly affect textural properties and crystalline structure of the α-MnO2, while γ-MnO2 is transformed into β-MnO2 for temperatures above 400 °C. The thermal stability α-MnO2 is due to the K+ ions insertion in its 4.6 Å × 4.6 Å tunnels and corroborated the catalytic performance of 100, 98, 98 and 97% compared to 71, 54, 52 and 48% for γ-MnO2 after four successive reuse cycles on Tartrazine Yellow dye. The insertion of cationic species (K+, Na+, Mg2+) into the structure of MnO2 reinforces its crystalline structure and promotes the formation of powerful oxidizing species through oxygen vacant sites.
期刊介绍:
The International Journal of Materials Research (IJMR) publishes original high quality experimental and theoretical papers and reviews on basic and applied research in the field of materials science and engineering, with focus on synthesis, processing, constitution, and properties of all classes of materials. Particular emphasis is placed on microstructural design, phase relations, computational thermodynamics, and kinetics at the nano to macro scale. Contributions may also focus on progress in advanced characterization techniques. All articles are subject to thorough, independent peer review.