Traditional and novel tools to probe the mitochondrial metabolism in health and disease

IF 7.9 Q1 Medicine
Yanfei Zhang, J. Avalos
{"title":"Traditional and novel tools to probe the mitochondrial metabolism in health and disease","authors":"Yanfei Zhang, J. Avalos","doi":"10.1002/wsbm.1373","DOIUrl":null,"url":null,"abstract":"Mitochondrial metabolism links energy production to other essential cellular processes such as signaling, cellular differentiation, and apoptosis. In addition to producing adenosine triphosphate (ATP) as an energy source, mitochondria are responsible for the synthesis of a myriad of important metabolites and cofactors such as tetrahydrofolate, α‐ketoacids, steroids, aminolevulinic acid, biotin, lipoic acid, acetyl‐CoA, iron‐sulfur clusters, heme, and ubiquinone. Furthermore, mitochondria and their metabolism have been implicated in aging and several human diseases, including inherited mitochondrial disorders, cardiac dysfunction, heart failure, neurodegenerative diseases, diabetes, and cancer. Therefore, there is great interest in understanding mitochondrial metabolism and the complex relationship it has with other cellular processes. A large number of studies on mitochondrial metabolism have been conducted in the last 50 years, taking a broad range of approaches. In this review, we summarize and discuss the most commonly used tools that have been used to study different aspects of the metabolism of mitochondria: ranging from dyes that monitor changes in the mitochondrial membrane potential and pharmacological tools to study respiration or ATP synthesis, to more modern tools such as genetically encoded biosensors and trans‐omic approaches enabled by recent advances in mass spectrometry, computation, and other technologies. These tools have allowed the large number of studies that have shaped our current understanding of mitochondrial metabolism. WIREs Syst Biol Med 2017, 9:e1373. doi: 10.1002/wsbm.1373","PeriodicalId":49254,"journal":{"name":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","volume":"21 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wsbm.1373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 11

Abstract

Mitochondrial metabolism links energy production to other essential cellular processes such as signaling, cellular differentiation, and apoptosis. In addition to producing adenosine triphosphate (ATP) as an energy source, mitochondria are responsible for the synthesis of a myriad of important metabolites and cofactors such as tetrahydrofolate, α‐ketoacids, steroids, aminolevulinic acid, biotin, lipoic acid, acetyl‐CoA, iron‐sulfur clusters, heme, and ubiquinone. Furthermore, mitochondria and their metabolism have been implicated in aging and several human diseases, including inherited mitochondrial disorders, cardiac dysfunction, heart failure, neurodegenerative diseases, diabetes, and cancer. Therefore, there is great interest in understanding mitochondrial metabolism and the complex relationship it has with other cellular processes. A large number of studies on mitochondrial metabolism have been conducted in the last 50 years, taking a broad range of approaches. In this review, we summarize and discuss the most commonly used tools that have been used to study different aspects of the metabolism of mitochondria: ranging from dyes that monitor changes in the mitochondrial membrane potential and pharmacological tools to study respiration or ATP synthesis, to more modern tools such as genetically encoded biosensors and trans‐omic approaches enabled by recent advances in mass spectrometry, computation, and other technologies. These tools have allowed the large number of studies that have shaped our current understanding of mitochondrial metabolism. WIREs Syst Biol Med 2017, 9:e1373. doi: 10.1002/wsbm.1373
探索线粒体代谢在健康和疾病中的传统和新型工具
线粒体代谢将能量产生与其他必要的细胞过程联系起来,如信号传导、细胞分化和细胞凋亡。除了产生三磷酸腺苷(ATP)作为能量来源外,线粒体还负责合成无数重要的代谢物和辅助因子,如四氢叶酸、α‐酮酸、类固醇、氨基乙酰丙酸、生物素、硫辛酸、乙酰辅酶a、铁‐硫簇、血红素和泛醌。此外,线粒体及其代谢与衰老和几种人类疾病有关,包括遗传性线粒体疾病、心功能障碍、心力衰竭、神经退行性疾病、糖尿病和癌症。因此,人们对了解线粒体代谢及其与其他细胞过程的复杂关系非常感兴趣。在过去的50年里,人们对线粒体代谢进行了大量的研究,采用了广泛的方法。在这篇综述中,我们总结和讨论了用于研究线粒体代谢不同方面的最常用工具:从监测线粒体膜电位变化的染料和研究呼吸或ATP合成的药理学工具,到更现代的工具,如遗传编码生物传感器和通过质谱、计算和其他技术的最新进展实现的反组学方法。这些工具促成了大量的研究,形成了我们目前对线粒体代谢的理解。中国生物医学工程学报,2017,39(4):563 - 567。doi: 10.1002 / wsbm.1373
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
18.40
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Journal Name:Wiley Interdisciplinary Reviews-Systems Biology and Medicine Focus: Strong interdisciplinary focus Serves as an encyclopedic reference for systems biology research Conceptual Framework: Systems biology asserts the study of organisms as hierarchical systems or networks Individual biological components interact in complex ways within these systems Article Coverage: Discusses biology, methods, and models Spans systems from a few molecules to whole species Topical Coverage: Developmental Biology Physiology Biological Mechanisms Models of Systems, Properties, and Processes Laboratory Methods and Technologies Translational, Genomic, and Systems Medicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信