Generation of a time–bin Greenberger–Horne–Zeilinger state with an optical switch

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Hsin-Pin Lo, Takuya Ikuta, Koji Azuma, T. Honjo, W. Munro, H. Takesue
{"title":"Generation of a time–bin Greenberger–Horne–Zeilinger state with an optical switch","authors":"Hsin-Pin Lo, Takuya Ikuta, Koji Azuma, T. Honjo, W. Munro, H. Takesue","doi":"10.1088/2058-9565/acc7c2","DOIUrl":null,"url":null,"abstract":"Multipartite entanglement is a critical resource in quantum information processing that exhibits much richer phenomenon and stronger correlations than in bipartite systems. This advantage is also reflected in its multi-user applications. Although many demonstrations have used photonic polarization qubits, polarization-mode dispersion confines the transmission of photonic polarization qubits through an optical fiber. Consequently, time–bin qubits have a particularly important role to play in quantum communication systems. Here, we generate a three-photon time–bin Greenberger–Horne–Zeilinger (GHZ) state using a 2 × 2 optical switch as a time-dependent beam splitter to entangle time–bin Bell states from a spontaneous parametric down-conversion source and a weak coherent pulse. To characterize the three-photon time–bin GHZ state, we performed measurement estimation, showed a violation of the Mermin inequality, and used quantum state tomography to fully reconstruct a density matrix, which shows a state fidelity exceeding 70%. We expect that our three-photon time–bin GHZ state can be used for long-distance multi-user quantum communication.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/acc7c2","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multipartite entanglement is a critical resource in quantum information processing that exhibits much richer phenomenon and stronger correlations than in bipartite systems. This advantage is also reflected in its multi-user applications. Although many demonstrations have used photonic polarization qubits, polarization-mode dispersion confines the transmission of photonic polarization qubits through an optical fiber. Consequently, time–bin qubits have a particularly important role to play in quantum communication systems. Here, we generate a three-photon time–bin Greenberger–Horne–Zeilinger (GHZ) state using a 2 × 2 optical switch as a time-dependent beam splitter to entangle time–bin Bell states from a spontaneous parametric down-conversion source and a weak coherent pulse. To characterize the three-photon time–bin GHZ state, we performed measurement estimation, showed a violation of the Mermin inequality, and used quantum state tomography to fully reconstruct a density matrix, which shows a state fidelity exceeding 70%. We expect that our three-photon time–bin GHZ state can be used for long-distance multi-user quantum communication.
用光开关产生时间bin greenberger - horn - zeilinger态
多部纠缠是量子信息处理中的一种重要资源,它表现出比双部系统更丰富的现象和更强的相关性。这一优势也体现在其多用户应用程序中。虽然许多演示使用了光子偏振量子比特,但偏振模式色散限制了光子偏振量子比特通过光纤的传输。因此,时间bin量子比特在量子通信系统中扮演着特别重要的角色。在这里,我们使用一个2 × 2光开关作为时间相关分束器来产生一个三光子时本格林伯格-霍恩-塞林格(GHZ)态,以纠缠来自自发参数下转换源和弱相干脉冲的时本贝尔态。为了表征三光子时本GHZ态,我们进行了测量估计,证明了Mermin不等式的违反,并使用量子态层析成像完全重建了密度矩阵,结果表明状态保真度超过70%。我们期望我们的三光子时滨GHZ态可以用于远距离多用户量子通信。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信