Endotoxin removal efficiency in conventional drinking water treatment plants, a case study in Egypt

IF 1 4区 环境科学与生态学 Q4 WATER RESOURCES
Zakaria A Mohamed, Saad Alamri, Mohamed Hashem
{"title":"Endotoxin removal efficiency in conventional drinking water treatment plants, a case study in Egypt","authors":"Zakaria A Mohamed, Saad Alamri, Mohamed Hashem","doi":"10.17159/wsa/2022.v48.i2.3908","DOIUrl":null,"url":null,"abstract":"The present study determines the endotoxin removal efficiency of drinking water treatment plants (DWTPs) in Egypt, as examples of conventional treatment methods used in developing countries. The total endotoxin in source water (Nile River) of these DWTPs ranged from 57 to 187 EU∙mL−1, depending on the location of treatment plants.  Coagulation/ flocculation/sedimentation (C/F/S) after chlorine pre-oxidation removed bound endotoxins by 76.1–85.5%, but caused cell lysis and increased free endotoxins by 28.2–33.3% of those detected in raw waters. Rapid sand filtration had not significant effect on free endotoxins, but reduced bound endotoxins by 23–33.3%. Final chlorine disinfection also reduced bound endotoxins to levels around 1 EU/mL, accompanied by an increase in free endotoxins (37–112 EU∙mL−1) in finished waters. Simultaneously, final chlorine disinfection removed all heterotrophic bacteria, with low cyanobacterial cell numbers (348–2 450 cells∙mL−1) detected in finished waters. Overall, conventional treatment processes at these DWTPs could removal substantial amounts of bound endotoxins and bacterial cells, but increase free endotoxins through cell lysis induced by pre-oxidation and final chlorine disinfection. The study suggests that conventional processes at DWTPs should be optimized and upgraded to improve their performance in endotoxin removal and ensure safe distribution of treated water to consumers.","PeriodicalId":23623,"journal":{"name":"Water SA","volume":"11 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water SA","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.17159/wsa/2022.v48.i2.3908","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 1

Abstract

The present study determines the endotoxin removal efficiency of drinking water treatment plants (DWTPs) in Egypt, as examples of conventional treatment methods used in developing countries. The total endotoxin in source water (Nile River) of these DWTPs ranged from 57 to 187 EU∙mL−1, depending on the location of treatment plants.  Coagulation/ flocculation/sedimentation (C/F/S) after chlorine pre-oxidation removed bound endotoxins by 76.1–85.5%, but caused cell lysis and increased free endotoxins by 28.2–33.3% of those detected in raw waters. Rapid sand filtration had not significant effect on free endotoxins, but reduced bound endotoxins by 23–33.3%. Final chlorine disinfection also reduced bound endotoxins to levels around 1 EU/mL, accompanied by an increase in free endotoxins (37–112 EU∙mL−1) in finished waters. Simultaneously, final chlorine disinfection removed all heterotrophic bacteria, with low cyanobacterial cell numbers (348–2 450 cells∙mL−1) detected in finished waters. Overall, conventional treatment processes at these DWTPs could removal substantial amounts of bound endotoxins and bacterial cells, but increase free endotoxins through cell lysis induced by pre-oxidation and final chlorine disinfection. The study suggests that conventional processes at DWTPs should be optimized and upgraded to improve their performance in endotoxin removal and ensure safe distribution of treated water to consumers.
传统饮用水处理厂内毒素去除效率,埃及案例研究
本研究确定了埃及饮用水处理厂(DWTPs)的内毒素去除效率,作为发展中国家使用的常规处理方法的例子。这些污水处理厂的源水中(尼罗河)的总内毒素在57至187 EU∙mL−1之间,取决于处理厂的位置。氯预氧化后的混凝/絮凝/沉降(C/F/S)对结合内毒素的去除率为76.1-85.5%,但导致细胞溶解,游离内毒素的增加量为原水的28.2-33.3%。快速砂滤对游离内毒素的影响不显著,但能使结合内毒素减少23-33.3%。最终的氯消毒还将结合内毒素降低到1 EU/mL左右的水平,同时成品水中游离内毒素增加(37-112 EU∙mL−1)。同时,最终氯消毒去除所有异养细菌,最终水中检测到的蓝藻细胞数较低(348-2 450个细胞∙mL−1)。总体而言,这些dwtp的传统处理工艺可以去除大量的结合内毒素和细菌细胞,但通过预氧化和最终氯消毒诱导的细胞裂解增加游离内毒素。该研究建议,应优化和升级水处理厂的传统工艺,以提高其去除内毒素的性能,并确保处理后的水安全分配给消费者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water SA
Water SA 环境科学-水资源
CiteScore
2.80
自引率
6.70%
发文量
46
审稿时长
18-36 weeks
期刊介绍: WaterSA publishes refereed, original work in all branches of water science, technology and engineering. This includes water resources development; the hydrological cycle; surface hydrology; geohydrology and hydrometeorology; limnology; salinisation; treatment and management of municipal and industrial water and wastewater; treatment and disposal of sewage sludge; environmental pollution control; water quality and treatment; aquaculture in terms of its impact on the water resource; agricultural water science; etc. Water SA is the WRC’s accredited scientific journal which contains original research articles and review articles on all aspects of water science, technology, engineering and policy. Water SA has been in publication since 1975 and includes articles from both local and international authors. The journal is issued quarterly (4 editions per year).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信