Mackenzie M Spicer, Jianqi Yang, Daniel Fu, Alison N DeVore, Marisol Lauffer, Nilufer S Atasoy, Deniz Atasoy, Rory A Fisher
{"title":"RGS6 mediates exercise-induced recovery of hippocampal neurogenesis, learning, and memory in an Alzheimer's mouse model.","authors":"Mackenzie M Spicer, Jianqi Yang, Daniel Fu, Alison N DeVore, Marisol Lauffer, Nilufer S Atasoy, Deniz Atasoy, Rory A Fisher","doi":"10.1101/2023.04.17.537272","DOIUrl":null,"url":null,"abstract":"<p><p>Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer's disease (AD). Adult hippocampal neurogenesis (AHN) is reduced in AD patients. Exercise stimulates AHN in rodents and improves memory and slows cognitive decline in AD patients. However, the molecular pathways for exercise-induced AHN and improved cognition in AD are poorly understood. Here, we show that voluntary running in APP <sub>SWE</sub> mice restores their hippocampal cognitive impairments to that of control mice. This cognitive rescue was abolished by RGS6 deletion in dentate gyrus (DG) neuronal progenitors (NPs), which also abolished running-mediated increases in AHN. AHN was reduced in sedentary APP <sub>SWE</sub> mice versus control mice, with basal AHN reduced by RGS6 deletion in DG NPs. RGS6 expression is significantly lower in the DG of AD patients. Thus, RGS6 mediates exercise-induced rescue of impaired cognition and AHN in AD mice, identifying RGS6 in DG NPs as a potential target to combat hippocampal neuron loss in AD.</p><p><strong>Teaser: </strong>RGS6 expression in hippocampal NPCs promotes voluntary running-induced neurogenesis and restored cognition in APP <sub>SWE</sub> mice.</p><p><strong>Field codes: </strong>RGS6, Alzheimer's disease, adult hippocampal neurogenesis, neural precursor cells, dentate gyrus, exercise, learning/memory.</p>","PeriodicalId":19376,"journal":{"name":"Nutrition & Food Science","volume":"95 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343197/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition & Food Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.04.17.537272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer's disease (AD). Adult hippocampal neurogenesis (AHN) is reduced in AD patients. Exercise stimulates AHN in rodents and improves memory and slows cognitive decline in AD patients. However, the molecular pathways for exercise-induced AHN and improved cognition in AD are poorly understood. Here, we show that voluntary running in APP SWE mice restores their hippocampal cognitive impairments to that of control mice. This cognitive rescue was abolished by RGS6 deletion in dentate gyrus (DG) neuronal progenitors (NPs), which also abolished running-mediated increases in AHN. AHN was reduced in sedentary APP SWE mice versus control mice, with basal AHN reduced by RGS6 deletion in DG NPs. RGS6 expression is significantly lower in the DG of AD patients. Thus, RGS6 mediates exercise-induced rescue of impaired cognition and AHN in AD mice, identifying RGS6 in DG NPs as a potential target to combat hippocampal neuron loss in AD.
Teaser: RGS6 expression in hippocampal NPCs promotes voluntary running-induced neurogenesis and restored cognition in APP SWE mice.
期刊介绍:
Nutrition & Food Science* (NFS) is an international, double blind peer-reviewed journal offering accessible and comprehensive coverage of food, beverage and nutrition research. The journal draws out the practical and social applications of research, demonstrates best practice through applied research and case studies and showcases innovative or controversial practices and points of view. The journal is an invaluable resource to inform individuals, organisations and the public on modern thinking, research and attitudes to food science and nutrition. NFS welcomes empirical and applied research, viewpoint papers, conceptual and technical papers, case studies, meta-analysis studies, literature reviews and general reviews which take a scientific approach to the following topics: -Attitudes to food and nutrition -Healthy eating/ nutritional public health initiatives, policies and legislation -Clinical and community nutrition and health (including public health and multiple or complex co-morbidities) -Nutrition in different cultural and ethnic groups -Nutrition during pregnancy, lactation, childhood, and young adult years -Nutrition for adults and older people -Nutrition in the workplace -Nutrition in lower and middle income countries (incl. comparisons with higher income countries) -Food science and technology, including food processing and microbiological quality -Genetically engineered foods -Food safety / quality, including chemical, physical and microbiological analysis of how these aspects effect health or nutritional quality of foodstuffs