Particle Swarm Optimization-Based Convolutional Neural Network for Handwritten Chinese Character Recognition

IF 0.7 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yongping Dan, Zhuo Li
{"title":"Particle Swarm Optimization-Based Convolutional Neural Network for Handwritten Chinese Character Recognition","authors":"Yongping Dan, Zhuo Li","doi":"10.20965/jaciii.2023.p0165","DOIUrl":null,"url":null,"abstract":"Recently, handwritten Chinese character recognition has become an important research field in computer vision. With the development of deep learning, convolutional neural networks (CNNs) have demonstrated excellent performance in computer vision. However, CNNs are typically designed manually, which requires extensive experience and may lead to redundant computations. To solve these problems, in this study, the particle swarm optimization approach is incorporated into the design of a CNN for handwritten Chinese character recognition, reducing redundant computations in the network. In this approach, each network architecture is represented by a particle, and the optimal network architecture is determined by continuously updating the particles until a global particle is identified. The experimental validation resulted in a network accuracy of 97.24% with only 1.43 million network parameters. Therefore, it is demonstrated that the proposed particle swarm optimization method can quickly and accurately find the optimal network architecture.","PeriodicalId":45921,"journal":{"name":"Journal of Advanced Computational Intelligence and Intelligent Informatics","volume":"32 1","pages":"165-172"},"PeriodicalIF":0.7000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computational Intelligence and Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jaciii.2023.p0165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

Abstract

Recently, handwritten Chinese character recognition has become an important research field in computer vision. With the development of deep learning, convolutional neural networks (CNNs) have demonstrated excellent performance in computer vision. However, CNNs are typically designed manually, which requires extensive experience and may lead to redundant computations. To solve these problems, in this study, the particle swarm optimization approach is incorporated into the design of a CNN for handwritten Chinese character recognition, reducing redundant computations in the network. In this approach, each network architecture is represented by a particle, and the optimal network architecture is determined by continuously updating the particles until a global particle is identified. The experimental validation resulted in a network accuracy of 97.24% with only 1.43 million network parameters. Therefore, it is demonstrated that the proposed particle swarm optimization method can quickly and accurately find the optimal network architecture.
基于粒子群优化的卷积神经网络手写体汉字识别
近年来,手写体汉字识别已成为计算机视觉的一个重要研究领域。随着深度学习的发展,卷积神经网络(cnn)在计算机视觉方面表现出了优异的性能。然而,cnn通常是手工设计的,这需要丰富的经验,并且可能导致冗余计算。为了解决这些问题,本研究将粒子群优化方法引入到手写汉字识别CNN的设计中,减少了网络中的冗余计算。在该方法中,每个网络结构由一个粒子表示,并通过不断更新粒子来确定最优网络结构,直到识别出全局粒子。实验验证结果表明,仅使用143万个网络参数,网络准确率达到97.24%。实验结果表明,所提出的粒子群优化方法能够快速准确地找到最优网络结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
89
期刊介绍: JACIII focuses on advanced computational intelligence and intelligent informatics. The topics include, but are not limited to; Fuzzy logic, Fuzzy control, Neural Networks, GA and Evolutionary Computation, Hybrid Systems, Adaptation and Learning Systems, Distributed Intelligent Systems, Network systems, Multi-media, Human interface, Biologically inspired evolutionary systems, Artificial life, Chaos, Complex systems, Fractals, Robotics, Medical applications, Pattern recognition, Virtual reality, Wavelet analysis, Scientific applications, Industrial applications, and Artistic applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信