Ruoyu Guo, Meiling Wang, Li Ming, Siyuan Cheng, K. Ning
{"title":"Research on Effect of Particle Size and Sintering Parameters on Porous Transducer","authors":"Ruoyu Guo, Meiling Wang, Li Ming, Siyuan Cheng, K. Ning","doi":"10.1109/3M-NANO.2018.8552204","DOIUrl":null,"url":null,"abstract":"The paper is focused on combining Potts Kinetic Monte Carlo method (KMCM) with Discrete Element method (DEM) to analyze the porous transducer sintered by glass microspheres. Effects of parameters including particle size distribution (PSD), mean particle size and sintering temperature, are studied by analyzing relative density and permeability of the porous transducer reconstructed based on its production process. Simulation results show that porous transducer made from glass microspheres with larger mean particle size and narrower PSD performs larger permeability. Meanwhile, higher sintering temperature can speed up the densification rate during sintering process. The above results can be applied to guide the fabrication process of porous transducer.","PeriodicalId":6583,"journal":{"name":"2018 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"60 1","pages":"37-41"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2018.8552204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The paper is focused on combining Potts Kinetic Monte Carlo method (KMCM) with Discrete Element method (DEM) to analyze the porous transducer sintered by glass microspheres. Effects of parameters including particle size distribution (PSD), mean particle size and sintering temperature, are studied by analyzing relative density and permeability of the porous transducer reconstructed based on its production process. Simulation results show that porous transducer made from glass microspheres with larger mean particle size and narrower PSD performs larger permeability. Meanwhile, higher sintering temperature can speed up the densification rate during sintering process. The above results can be applied to guide the fabrication process of porous transducer.