Prediction of osmotic airway hyperresponsiveness in patients with bronchial asthma using adaptive neuro-fuzzy network

V. Kolosov, N. Bezrukov, Denis Naumov, Yuliy M. Perelman, A. Prikhodko
{"title":"Prediction of osmotic airway hyperresponsiveness in patients with bronchial asthma using adaptive neuro-fuzzy network","authors":"V. Kolosov, N. Bezrukov, Denis Naumov, Yuliy M. Perelman, A. Prikhodko","doi":"10.1109/SIBIRCON.2015.7361867","DOIUrl":null,"url":null,"abstract":"The paper discusses the development of decision support systems based on adaptive neuro-fuzzy network to predict the osmotic airway hyperreactivity in patients with bronchial asthma. Static spirography data analysis has been conducted and polymorphism in the TRPV4 gene examined. A prediction system comprising the parts of pre-processing and neuro-fuzzy inference has been developed. A GUI has been implemented for the system. MATLAB is used as the modeling and computation engine.","PeriodicalId":6503,"journal":{"name":"2015 International Conference on Biomedical Engineering and Computational Technologies (SIBIRCON)","volume":"44 1","pages":"130-133"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biomedical Engineering and Computational Technologies (SIBIRCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBIRCON.2015.7361867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The paper discusses the development of decision support systems based on adaptive neuro-fuzzy network to predict the osmotic airway hyperreactivity in patients with bronchial asthma. Static spirography data analysis has been conducted and polymorphism in the TRPV4 gene examined. A prediction system comprising the parts of pre-processing and neuro-fuzzy inference has been developed. A GUI has been implemented for the system. MATLAB is used as the modeling and computation engine.
应用自适应神经模糊网络预测支气管哮喘患者渗透性气道高反应性
本文讨论了基于自适应神经模糊网络的支气管哮喘患者渗透性气道高反应性预测决策支持系统的开发。进行了静态肺活量分析,并检测了TRPV4基因的多态性。开发了一个由预处理和神经模糊推理两部分组成的预测系统。已经为系统实现了GUI。采用MATLAB作为建模和计算引擎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信