{"title":"Accurate Core Alignment for Polymer Optical Waveguide in the Mosquito Method for High-Efficient Coupling","authors":"Y. Morimoto, Kumi Date, T. Ishigure","doi":"10.1109/ECTC.2018.00368","DOIUrl":null,"url":null,"abstract":"We demonstrate the importance of vertical position accuracy of formed core in the polymer optical waveguides fabricated using the Mosquito method for 3-dimensional wiring. We theoretically confirm the core vertical position deviation from the designed position is caused by the several fabrication parameters, the needle size and the needle-scanning speed. As an example of 3-dimensional wiring, we focus on the optical path conversion by 45-degree mirrors, and experimentally investigate the influence of the core vertical position on the coupling efficiency to other components via a 45-degree mirror. By forming the cores on appropriate height in the cladding, graded-index core optical waveguides exhibit a slight loss increment as low as 0.2 dB due to mirror structure, realizing the high efficient coupling via a 45-degree mirror.","PeriodicalId":6555,"journal":{"name":"2018 IEEE 68th Electronic Components and Technology Conference (ECTC)","volume":"PP 1","pages":"2444-2449"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 68th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2018.00368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate the importance of vertical position accuracy of formed core in the polymer optical waveguides fabricated using the Mosquito method for 3-dimensional wiring. We theoretically confirm the core vertical position deviation from the designed position is caused by the several fabrication parameters, the needle size and the needle-scanning speed. As an example of 3-dimensional wiring, we focus on the optical path conversion by 45-degree mirrors, and experimentally investigate the influence of the core vertical position on the coupling efficiency to other components via a 45-degree mirror. By forming the cores on appropriate height in the cladding, graded-index core optical waveguides exhibit a slight loss increment as low as 0.2 dB due to mirror structure, realizing the high efficient coupling via a 45-degree mirror.