Using Artificial Neural Networks to Predict Direct Solar Irradiation

J. Mubiru
{"title":"Using Artificial Neural Networks to Predict Direct Solar Irradiation","authors":"J. Mubiru","doi":"10.1155/2011/142054","DOIUrl":null,"url":null,"abstract":"This paper explores the possibility of developing a prediction model using artificial neural networks (ANNs), which could be used to estimate monthly average daily direct solar radiation for locations in Uganda. Direct solar radiation is a component of the global solar radiation and is quite significant in the performance assessment of various solar energy applications. Results from the paper have shown good agreement between the estimated and measured values of direct solar irradiation. A correlation coefficient of 0.998 was obtained withmean bias error of 0.005 MJ/m2 and rootmean square error of 0.197 MJ/m2. The comparison between the ANN and empirical model emphasized the superiority of the proposed ANN prediction model. The application of the proposed ANN model can be extended to other locations with similar climate and terrain.","PeriodicalId":7288,"journal":{"name":"Adv. Artif. Neural Syst.","volume":"41 1","pages":"142054:1-142054:6"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Neural Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/142054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

This paper explores the possibility of developing a prediction model using artificial neural networks (ANNs), which could be used to estimate monthly average daily direct solar radiation for locations in Uganda. Direct solar radiation is a component of the global solar radiation and is quite significant in the performance assessment of various solar energy applications. Results from the paper have shown good agreement between the estimated and measured values of direct solar irradiation. A correlation coefficient of 0.998 was obtained withmean bias error of 0.005 MJ/m2 and rootmean square error of 0.197 MJ/m2. The comparison between the ANN and empirical model emphasized the superiority of the proposed ANN prediction model. The application of the proposed ANN model can be extended to other locations with similar climate and terrain.
利用人工神经网络预测太阳直射辐射
本文探讨了利用人工神经网络(ann)开发预测模型的可能性,该模型可用于估计乌干达地区的月平均日直接太阳辐射。太阳直接辐射是太阳总辐射的一个组成部分,在各种太阳能应用的性能评估中具有重要意义。本文的计算结果表明,太阳直接辐射的估计值与实测值吻合良好。相关系数为0.998,平均偏差为0.005 MJ/m2,均方根误差为0.197 MJ/m2。人工神经网络与经验模型的比较,强调了人工神经网络预测模型的优越性。所提出的人工神经网络模型可以推广到其他具有相似气候和地形的地点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信