Influence of structural disorder on the elastic, frictional, and electrical properties in functionalized polyaniline thin films at the nanoscale investigated by atomic force microscopy
En-De Chu, Hsi-Hsien Chiang, Shuei-De Huang, Po-Yen Chen, Yu-Tso Liao, Philip Nathaniel, Chein-Chun Han, F. Lo, Hsiang-Chih Chiu
{"title":"Influence of structural disorder on the elastic, frictional, and electrical properties in functionalized polyaniline thin films at the nanoscale investigated by atomic force microscopy","authors":"En-De Chu, Hsi-Hsien Chiang, Shuei-De Huang, Po-Yen Chen, Yu-Tso Liao, Philip Nathaniel, Chein-Chun Han, F. Lo, Hsiang-Chih Chiu","doi":"10.1080/1023666X.2023.2242638","DOIUrl":null,"url":null,"abstract":"Abstract We investigated the influence of structural order on the elastic, frictional, and electrical properties of butylthio-functionalized PANI (PANI-SBu) films by atomic force microscopy (AFM)-based techniques, including PeakForce quantitative nanomechanical mapping, friction force microscopy, and conductive AFM. The PANI-SBu films were prepared by the drop-cast method from the solution of PANI-SBu in N-methyl-2-pyrrolidone that was continuously stirred. The PANI-SBu films were fabricated after different solution stirring times. The shear force during the mechanical stir will disentangle the highly-coiled PANI-SBu polymer chains in the solution. Therefore, the polymer chains in solution cast on the substrates will progressively self-assemble into a more organized structure when solvents evaporate, leading to PANI-SBu films with improved structural order. Our AFM studies discovered that more structurally-ordered PANI-SBu films have substantially larger out-of-plane elastic moduli and charge mobility but smaller kinetic friction coefficients. The denser packing of polymer molecules increases film elasticities and promotes chain-to-chain charge transport. In addition, stiffer PANI-SBu film surfaces are more difficult to deform when sheared by the sliding AFM probe, resulting in less energy dissipation during AFM friction measurements. Thus, smaller kinetic friction coefficients were found. Conversely, more structurally-disordered PANI-SBu films have smaller elasticity and charge mobility but larger kinetic friction coefficients. Our results demonstrate that it is possible to manipulate the elastic, frictional, and electrical properties of PANI-SBu films by controlling their structural order, which can be essential for developing polymer-based composite materials and flexible electronic devices.","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Analysis and Characterization","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/1023666X.2023.2242638","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We investigated the influence of structural order on the elastic, frictional, and electrical properties of butylthio-functionalized PANI (PANI-SBu) films by atomic force microscopy (AFM)-based techniques, including PeakForce quantitative nanomechanical mapping, friction force microscopy, and conductive AFM. The PANI-SBu films were prepared by the drop-cast method from the solution of PANI-SBu in N-methyl-2-pyrrolidone that was continuously stirred. The PANI-SBu films were fabricated after different solution stirring times. The shear force during the mechanical stir will disentangle the highly-coiled PANI-SBu polymer chains in the solution. Therefore, the polymer chains in solution cast on the substrates will progressively self-assemble into a more organized structure when solvents evaporate, leading to PANI-SBu films with improved structural order. Our AFM studies discovered that more structurally-ordered PANI-SBu films have substantially larger out-of-plane elastic moduli and charge mobility but smaller kinetic friction coefficients. The denser packing of polymer molecules increases film elasticities and promotes chain-to-chain charge transport. In addition, stiffer PANI-SBu film surfaces are more difficult to deform when sheared by the sliding AFM probe, resulting in less energy dissipation during AFM friction measurements. Thus, smaller kinetic friction coefficients were found. Conversely, more structurally-disordered PANI-SBu films have smaller elasticity and charge mobility but larger kinetic friction coefficients. Our results demonstrate that it is possible to manipulate the elastic, frictional, and electrical properties of PANI-SBu films by controlling their structural order, which can be essential for developing polymer-based composite materials and flexible electronic devices.
期刊介绍:
The scope of the journal is to publish original contributions and reviews on studies, methodologies, instrumentation, and applications involving the analysis and characterization of polymers and polymeric-based materials, including synthetic polymers, blends, composites, fibers, coatings, supramolecular structures, polysaccharides, and biopolymers. The Journal will accept papers and review articles on the following topics and research areas involving fundamental and applied studies of polymer analysis and characterization:
Characterization and analysis of new and existing polymers and polymeric-based materials.
Design and evaluation of analytical instrumentation and physical testing equipment.
Determination of molecular weight, size, conformation, branching, cross-linking, chemical structure, and sequence distribution.
Using separation, spectroscopic, and scattering techniques.
Surface characterization of polymeric materials.
Measurement of solution and bulk properties and behavior of polymers.
Studies involving structure-property-processing relationships, and polymer aging.
Analysis of oligomeric materials.
Analysis of polymer additives and decomposition products.