On the new bicomplex generalization of Hurwitz–Lerch zeta function with properties and applications

Ankita Chandola, R. Pandey, K. Nisar
{"title":"On the new bicomplex generalization of Hurwitz–Lerch zeta function with properties and applications","authors":"Ankita Chandola, R. Pandey, K. Nisar","doi":"10.1515/anly-2021-1032","DOIUrl":null,"url":null,"abstract":"Abstract In the recent years, various authors introduced different generalizations of the Hurwitz–Lerch zeta function and discussed its various properties. The main aim of our study is to introduce a new bicomplex generalization of the Hurwitz–Lerch zeta function using the new generalized form of the beta function that involves the Appell series and Lauricella functions. The new bicomplex generalization of the Hurwitz–Lerch zeta function reduces to some already known functions like the Hurwitz–Lerch zeta function, Hurwitz zeta function, Riemann zeta function and polylogarithmic function. Its different properties such as recurrence relation, summation formula, differentiation formula, generating relations and integral representations are investigated. All results induced are general in nature and reducible to already known results. As an application of the new bicomplex generalization of the Hurwitz–Lerch zeta function, we have developed a new generalized form of fractional kinetic equation and obtained its solution using the natural transform.","PeriodicalId":82310,"journal":{"name":"Philosophic research and analysis","volume":"26 1","pages":"71 - 88"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophic research and analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anly-2021-1032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In the recent years, various authors introduced different generalizations of the Hurwitz–Lerch zeta function and discussed its various properties. The main aim of our study is to introduce a new bicomplex generalization of the Hurwitz–Lerch zeta function using the new generalized form of the beta function that involves the Appell series and Lauricella functions. The new bicomplex generalization of the Hurwitz–Lerch zeta function reduces to some already known functions like the Hurwitz–Lerch zeta function, Hurwitz zeta function, Riemann zeta function and polylogarithmic function. Its different properties such as recurrence relation, summation formula, differentiation formula, generating relations and integral representations are investigated. All results induced are general in nature and reducible to already known results. As an application of the new bicomplex generalization of the Hurwitz–Lerch zeta function, we have developed a new generalized form of fractional kinetic equation and obtained its solution using the natural transform.
关于Hurwitz-Lerch zeta函数的新的双复推广及其性质和应用
近年来,不同的作者介绍了Hurwitz-Lerch zeta函数的不同推广,并讨论了它的各种性质。本文研究的主要目的是利用包含Appell级数和Lauricella函数的beta函数的新广义形式引入Hurwitz-Lerch zeta函数的一种新的双复推广。Hurwitz - lerch zeta函数的新的双复推广简化为一些已知的函数,如Hurwitz - lerch zeta函数、Hurwitz zeta函数、Riemann zeta函数和多对数函数。研究了它的递推关系、求和公式、微分公式、生成关系和积分表示等不同性质。归纳出的所有结果在性质上都是一般的,并可简化为已知的结果。作为Hurwitz-Lerch zeta函数新的双复推广的应用,我们建立了分数阶动力学方程的一种新的推广形式,并利用自然变换得到了它的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信