Causes and Countermeasures of Strong Vibration of Pipe End Thickener

Li Tongyi
{"title":"Causes and Countermeasures of Strong Vibration of Pipe End Thickener","authors":"Li Tongyi","doi":"10.11648/J.IE.20190302.12","DOIUrl":null,"url":null,"abstract":"The pipe end thickening machine is a pressure processing equipment for thickening the pipe end of plastic material. The process of thickening the tubing end is to heat one end of the tubing to a certain temperature, push it into the die hall, and close the die cylinder under the push of hydraulic oil to press the end of the pipe. Then, squeeze into the cylinder forward, and the extrusion head on the piston rod thickens the end of the pipe. Complete the thickening process at the end of the pipe. In the production process, due to the great pressure change of the hydraulic system, the vibration of the system is violent, resulting in pipeline cracking, which seriously affects the production. Through the analysis of hydraulic system of pipe end thickener, it is found that the fundamental cause of the system pressure relief vibration is that when the hydraulic system is unloading, the volume of the hydraulic cylinder unloading cavity is large and the energy is accumulated. The problem can be solved by adjusting the section where the actual stroke of the hydraulic cylinder is located in the total stroke to reduce the volume of the pressure relief chamber and the energy released when the pressure is unloaded.","PeriodicalId":13667,"journal":{"name":"Industrial & Engineering Chemistry","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IE.20190302.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The pipe end thickening machine is a pressure processing equipment for thickening the pipe end of plastic material. The process of thickening the tubing end is to heat one end of the tubing to a certain temperature, push it into the die hall, and close the die cylinder under the push of hydraulic oil to press the end of the pipe. Then, squeeze into the cylinder forward, and the extrusion head on the piston rod thickens the end of the pipe. Complete the thickening process at the end of the pipe. In the production process, due to the great pressure change of the hydraulic system, the vibration of the system is violent, resulting in pipeline cracking, which seriously affects the production. Through the analysis of hydraulic system of pipe end thickener, it is found that the fundamental cause of the system pressure relief vibration is that when the hydraulic system is unloading, the volume of the hydraulic cylinder unloading cavity is large and the energy is accumulated. The problem can be solved by adjusting the section where the actual stroke of the hydraulic cylinder is located in the total stroke to reduce the volume of the pressure relief chamber and the energy released when the pressure is unloaded.
管端加厚机强振动的原因及对策
管端加厚机是对塑料材料的管端进行加厚的压力加工设备。管端加厚的过程是将管端加热到一定温度后,推入模厅,在液压油的推动下关闭模缸,压紧管端。然后,向前挤进气缸,活塞杆上的挤压头使管端加厚。在管端完成加厚工序。在生产过程中,由于液压系统压力变化大,系统振动剧烈,造成管路开裂,严重影响生产。通过对管端加厚机液压系统的分析,发现系统泄压振动的根本原因是液压系统卸载时,液压缸卸载腔体积大,能量积累。通过调整液压缸实际行程在总行程中的位置,减小泄压室的体积和卸压时释放的能量,可以解决这一问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信