A Hybrid System For Pandemic Evolution Prediction

IF 1.7 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lilia Muñoz, M. Alonso-García, Vladimir Villarreal, Guillermo Hernández, Mel Nielsen, Francisco Pinto-Santos, Amilkar Saavedra, Mariana Areiza, Juan Montenegro, Inés Sittón-Candanedo, Yen-Air Caballero-González, S. Trabelsi, J. Corchado
{"title":"A Hybrid System For Pandemic Evolution Prediction","authors":"Lilia Muñoz, M. Alonso-García, Vladimir Villarreal, Guillermo Hernández, Mel Nielsen, Francisco Pinto-Santos, Amilkar Saavedra, Mariana Areiza, Juan Montenegro, Inés Sittón-Candanedo, Yen-Air Caballero-González, S. Trabelsi, J. Corchado","doi":"10.14201/adcaij.28093","DOIUrl":null,"url":null,"abstract":"The areas of data science and data engineering have experienced strong advances in recent years. This has had a particular impact in areas such as healthcare, where, as a result of the pandemic caused by the COVID-19 virus, technological development has accelerated. This has led to a need to produce solutions that enable the collection, integration and efficient use of information for decision making scenarios. This is evidenced by the proliferation of monitoring, data collection, analysis, and prediction systems aimed at controlling the pandemic. This article proposes a hybrid model that combines the dynamics of epidemiological processes with the predictive capabilities of artificial neural networks to go beyond the prediction of the first ones. In addition, the system allows for the introduction of additional information through an expert system, thus allowing the incorporation of additional hypotheses on the adoption of containment measures. \n \n  \n \n ","PeriodicalId":42597,"journal":{"name":"ADCAIJ-Advances in Distributed Computing and Artificial Intelligence Journal","volume":"68 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADCAIJ-Advances in Distributed Computing and Artificial Intelligence Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14201/adcaij.28093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The areas of data science and data engineering have experienced strong advances in recent years. This has had a particular impact in areas such as healthcare, where, as a result of the pandemic caused by the COVID-19 virus, technological development has accelerated. This has led to a need to produce solutions that enable the collection, integration and efficient use of information for decision making scenarios. This is evidenced by the proliferation of monitoring, data collection, analysis, and prediction systems aimed at controlling the pandemic. This article proposes a hybrid model that combines the dynamics of epidemiological processes with the predictive capabilities of artificial neural networks to go beyond the prediction of the first ones. In addition, the system allows for the introduction of additional information through an expert system, thus allowing the incorporation of additional hypotheses on the adoption of containment measures.    
大流行演变预测的混合系统
近年来,数据科学和数据工程领域取得了长足的进步。这对医疗保健等领域产生了特别的影响,由于COVID-19病毒引起的大流行,这些领域的技术发展加快了。这导致需要制定解决方案,以便为决策情景收集、整合和有效使用信息。旨在控制大流行的监测、数据收集、分析和预测系统的扩散证明了这一点。本文提出了一种混合模型,将流行病学过程的动态与人工神经网络的预测能力相结合,以超越第一种预测。此外,该系统还允许通过专家系统引入额外信息,从而可以纳入关于采取遏制措施的额外假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
22
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信