The xanthate route to six-membered carbocycles

S. Zard
{"title":"The xanthate route to six-membered carbocycles","authors":"S. Zard","doi":"10.1177/17475198221088194","DOIUrl":null,"url":null,"abstract":"Convergent routes to various six-membered carbocyclic architectures exploiting the unique radical chemistry of xanthates are described in this brief review. Three approaches are discussed. The first is the modification of existing cyclohexane building blocks, namely, cyclohexanones, cyclohexenones and cyclohexenes. The second deals with the construction of six-membered carbocycles by associating the chemistry of xanthates with classical ionic reactions, especially the Robinson annulation, the Michael addition and the Horner–Wadsworth–Emmons condensation. Finally, the third route is the formation of six-membered rings by direct six-exo and, but more rarely, six-endo cyclisation modes. Many of the complex structures presented herein would be tedious to obtain by more traditional methods.","PeriodicalId":15318,"journal":{"name":"Journal of Chemical Research-s","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Research-s","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/17475198221088194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Convergent routes to various six-membered carbocyclic architectures exploiting the unique radical chemistry of xanthates are described in this brief review. Three approaches are discussed. The first is the modification of existing cyclohexane building blocks, namely, cyclohexanones, cyclohexenones and cyclohexenes. The second deals with the construction of six-membered carbocycles by associating the chemistry of xanthates with classical ionic reactions, especially the Robinson annulation, the Michael addition and the Horner–Wadsworth–Emmons condensation. Finally, the third route is the formation of six-membered rings by direct six-exo and, but more rarely, six-endo cyclisation modes. Many of the complex structures presented herein would be tedious to obtain by more traditional methods.
黄原药生成六元碳环的途径
本文简要介绍了利用黄原酸盐独特的自由基化学性质,聚合到各种六元碳环结构的途径。讨论了三种方法。第一种是对现有的环己烷构件进行修饰,即环己酮、环己酮和环己烯。第二部分是通过将黄药的化学性质与经典离子反应联系起来,特别是罗宾逊环化反应、迈克尔加成反应和霍纳-沃兹沃思-埃蒙斯缩合反应,来研究六元碳环的结构。最后,第三种途径是通过直接的六外键和更罕见的六内键环化模式形成六元环。本文提出的许多复杂结构将是繁琐的,以更传统的方法来获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Research-s
Journal of Chemical Research-s 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: The Journal of Chemical Research is a peer reviewed journal that publishes full-length review and research papers in all branches of experimental chemistry. The journal fills a niche by also publishing short papers, a format which favours particular types of work, e.g. the scope of new reagents or methodology, and the elucidation of the structure of novel compounds. Though welcome, short papers should not result in fragmentation of publication, they should describe a completed piece of work. The Journal is not intended as a vehicle for preliminary publications. The work must meet all the normal criteria for acceptance as regards scientific standards. Papers that contain extensive biological results or material relating to other areas of science may be diverted to more appropriate specialist journals. Areas of coverage include: Organic Chemistry; Inorganic Chemistry; Materials Chemistry; Crystallography; Computational Chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信