{"title":"Comparative evaluation of six wireless sensor devices in a high ionizing radiation environment","authors":"Qiang Huang, Jin Jiang, Yongqiang Deng","doi":"10.1049/iet-wss.2020.0035","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This paper reports the results of experimental studies of six different wireless sensor nodes and networks under a radiation environment with a dose rate of 20 K Rad (Si)/h. The wireless nodes evaluated are ZigBee, WirelessHART, ISA 100.11a, LoRa, and 433/915 MHz point-to-point devices made from commercial off-the-shelf (COTS) components. The experiments were carried out using a <sup>60</sup>Co gamma source, while the devices are at on-power operating states, and their operating statuses have been continuously monitored to determine the first instance of failure and the rate of gradual degradation in terms of communication channel performance and quality of the wireless signals. Observations indicate that the different devices and networks exhibit varying levels of radiation tolerance. For example, some can only survive for less than one hour, but others are operating satisfactorily for several hours. Furthermore, before a device suffers a fatal hardware failure, the performance degradation progresses slowly. It is believed that this is the first time that such results are reported in the open literature. Their significance is that the results can provide some practical guidance to select the most suitable wireless devices for the design and construction of remote monitoring systems for high-level radiation environments.</p>\n </div>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-wss.2020.0035","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-wss.2020.0035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper reports the results of experimental studies of six different wireless sensor nodes and networks under a radiation environment with a dose rate of 20 K Rad (Si)/h. The wireless nodes evaluated are ZigBee, WirelessHART, ISA 100.11a, LoRa, and 433/915 MHz point-to-point devices made from commercial off-the-shelf (COTS) components. The experiments were carried out using a 60Co gamma source, while the devices are at on-power operating states, and their operating statuses have been continuously monitored to determine the first instance of failure and the rate of gradual degradation in terms of communication channel performance and quality of the wireless signals. Observations indicate that the different devices and networks exhibit varying levels of radiation tolerance. For example, some can only survive for less than one hour, but others are operating satisfactorily for several hours. Furthermore, before a device suffers a fatal hardware failure, the performance degradation progresses slowly. It is believed that this is the first time that such results are reported in the open literature. Their significance is that the results can provide some practical guidance to select the most suitable wireless devices for the design and construction of remote monitoring systems for high-level radiation environments.
本文报道了在剂量率为20 K Rad (Si)/h的辐射环境下,对6种不同无线传感器节点和网络的实验研究结果。评估的无线节点包括ZigBee、WirelessHART、ISA 100.11a、LoRa和433/915 MHz点对点设备,这些设备由商用现货(COTS)组件制成。实验采用60Co伽马源,设备处于通电工作状态,并对其工作状态进行连续监测,以确定第一次故障以及通信信道性能和无线信号质量逐渐退化的速率。观察表明,不同的设备和网络表现出不同程度的辐射耐受。例如,一些只能存活不到一个小时,但另一些可以令人满意地运行几个小时。此外,在设备遭受致命的硬件故障之前,性能下降的速度很慢。相信这是第一次在公开文献中报道这样的结果。其意义在于,研究结果可为高辐射环境下远程监测系统的设计和建设选择最合适的无线设备提供一定的实用指导。
期刊介绍:
IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.