Optimized line and line segment clipping in E2 and Geometric Algebra

V. Skala
{"title":"Optimized line and line segment clipping in E2 and Geometric Algebra","authors":"V. Skala","doi":"10.33039/ami.2020.05.001","DOIUrl":null,"url":null,"abstract":"Algorithms for line and line segment clipping are well known algorithms especially in the field of computer graphics. They are formulated for the Euclidean space representation. However, computer graphics uses the projective extension of the Euclidean space and homogeneous coordinates for representation geometric transformations with points in the E or E space. The projection operation from the E to the E space leads to the necessity to convert coordinates to the Euclidean space if the clipping operation is to be used. In this contribution, an optimized simple algorithm for line and line segment clipping in the E space, which works directly with homogeneous representation and not requiring the conversion to the Euclidean space, is described. It is based on Geometric Algebra (GA) formulation for projective representation. The proposed algorithm is simple, efficient and easy to implement. The algorithm can be efficiently modified for the SSE4 instruction use or the GPU application, too.","PeriodicalId":8040,"journal":{"name":"Applied Medical Informaticvs","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Medical Informaticvs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33039/ami.2020.05.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Algorithms for line and line segment clipping are well known algorithms especially in the field of computer graphics. They are formulated for the Euclidean space representation. However, computer graphics uses the projective extension of the Euclidean space and homogeneous coordinates for representation geometric transformations with points in the E or E space. The projection operation from the E to the E space leads to the necessity to convert coordinates to the Euclidean space if the clipping operation is to be used. In this contribution, an optimized simple algorithm for line and line segment clipping in the E space, which works directly with homogeneous representation and not requiring the conversion to the Euclidean space, is described. It is based on Geometric Algebra (GA) formulation for projective representation. The proposed algorithm is simple, efficient and easy to implement. The algorithm can be efficiently modified for the SSE4 instruction use or the GPU application, too.
优化线和线段裁剪在E2和几何代数
直线和线段裁剪算法是计算机图形学领域中非常有名的算法。它们是用欧几里德空间表示的。然而,计算机图形学使用欧几里得空间的射影扩展和齐次坐标来表示E或E空间中的点的几何变换。如果要使用裁剪操作,从E到E空间的投影操作导致必须将坐标转换为欧几里德空间。在这篇贡献中,描述了一种在E空间中进行直线和线段裁剪的优化简单算法,该算法直接使用齐次表示而不需要转换到欧几里德空间。它是基于几何代数(GA)公式的投影表示。该算法简单、高效、易于实现。该算法也可以有效地修改为SSE4指令的使用或GPU应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信