{"title":"Preparation of magnetic Co–Fe layered double hydroxides and its adsorption properties for the removal of methyl orange","authors":"Yuye Xie, Fa-Ping Ye, Su-qin Zhao","doi":"10.1177/17475198221150382","DOIUrl":null,"url":null,"abstract":"In this study, Co–Fe layered double hydroxides are prepared by a hydrothermal method. The Co–Fe layered double hydroxides are used as an adsorbent for the investigation of the thermodynamic parameters and adsorption kinetics of methyl orange from aqueous solution. The results show that adsorption is affected by adsorbent dosage, adsorption time, and temperature. The characteristics of samples are investigated using X-ray powder diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, and N2 adsorption–desorption isotherms. The adsorption saturation level of Co–Fe layered double hydroxides on methyl orange is studied, with the results showing that the maximum uptake capacity for methyl orange is 10.21 mg g−1 based on Co–Fe layered double hydroxides. The adsorption kinetics of methyl orange is consistent with the Temkin isotherm equation and quasi-secondary kinetic model. Furthermore, separation is easily accomplished under the action of an applied magnetic field. The prepared Co–Fe layered double hydroxides can be applied as an effective adsorbent for decontamination of anionic dyes in industrial effluents.","PeriodicalId":15318,"journal":{"name":"Journal of Chemical Research-s","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Research-s","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/17475198221150382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, Co–Fe layered double hydroxides are prepared by a hydrothermal method. The Co–Fe layered double hydroxides are used as an adsorbent for the investigation of the thermodynamic parameters and adsorption kinetics of methyl orange from aqueous solution. The results show that adsorption is affected by adsorbent dosage, adsorption time, and temperature. The characteristics of samples are investigated using X-ray powder diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, and N2 adsorption–desorption isotherms. The adsorption saturation level of Co–Fe layered double hydroxides on methyl orange is studied, with the results showing that the maximum uptake capacity for methyl orange is 10.21 mg g−1 based on Co–Fe layered double hydroxides. The adsorption kinetics of methyl orange is consistent with the Temkin isotherm equation and quasi-secondary kinetic model. Furthermore, separation is easily accomplished under the action of an applied magnetic field. The prepared Co–Fe layered double hydroxides can be applied as an effective adsorbent for decontamination of anionic dyes in industrial effluents.
期刊介绍:
The Journal of Chemical Research is a peer reviewed journal that publishes full-length review and research papers in all branches of experimental chemistry. The journal fills a niche by also publishing short papers, a format which favours particular types of work, e.g. the scope of new reagents or methodology, and the elucidation of the structure of novel compounds. Though welcome, short papers should not result in fragmentation of publication, they should describe a completed piece of work. The Journal is not intended as a vehicle for preliminary publications. The work must meet all the normal criteria for acceptance as regards scientific standards. Papers that contain extensive biological results or material relating to other areas of science may be diverted to more appropriate specialist journals. Areas of coverage include: Organic Chemistry; Inorganic Chemistry; Materials Chemistry; Crystallography; Computational Chemistry.