Theory, model, and applications of non-Gaussian probability density functions for random jitter/noise with non-white power spectral densities

Daniel Chow, Masashi Shimanouchi, Mike P. Li
{"title":"Theory, model, and applications of non-Gaussian probability density functions for random jitter/noise with non-white power spectral densities","authors":"Daniel Chow, Masashi Shimanouchi, Mike P. Li","doi":"10.1109/TEST.2013.6651910","DOIUrl":null,"url":null,"abstract":"In high speed data communications, timing jitter and voltage noise analyses often depend on mathematical models to predict long-term reliability of the system, typically merited by a low bit error ratio (BER). Many methods involve the extrapolation of random jitter (RJ) and random noise (RN) to very low BER, assuming that RJ is white Gaussian noise. In reality, RJ spectra are not always white. Thus, RJ statistical distributions can deviate from an ideal Gaussian, affecting the accuracy of extrapolations. This paper presents a theory and model for relating RJ distributions with colored spectra. We apply this model to various filtered RJ spectra, including the extreme case of Brownian (1/f2) noise, and show correlation between simulation and measurement.","PeriodicalId":6379,"journal":{"name":"2013 IEEE International Test Conference (ITC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Test Conference (ITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.2013.6651910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In high speed data communications, timing jitter and voltage noise analyses often depend on mathematical models to predict long-term reliability of the system, typically merited by a low bit error ratio (BER). Many methods involve the extrapolation of random jitter (RJ) and random noise (RN) to very low BER, assuming that RJ is white Gaussian noise. In reality, RJ spectra are not always white. Thus, RJ statistical distributions can deviate from an ideal Gaussian, affecting the accuracy of extrapolations. This paper presents a theory and model for relating RJ distributions with colored spectra. We apply this model to various filtered RJ spectra, including the extreme case of Brownian (1/f2) noise, and show correlation between simulation and measurement.
非白功率谱密度随机抖动/噪声的非高斯概率密度函数的理论、模型和应用
在高速数据通信中,时序抖动和电压噪声分析通常依赖于数学模型来预测系统的长期可靠性,通常具有低误码率(BER)。许多方法将随机抖动(RJ)和随机噪声(RN)外推到非常低的误码率,假设RJ是高斯白噪声。实际上,RJ光谱并不总是白色的。因此,RJ统计分布可能偏离理想的高斯分布,影响外推的准确性。本文提出了将RJ分布与有色光谱联系起来的理论和模型。我们将该模型应用于各种滤波后的RJ光谱,包括布朗(1/f2)噪声的极端情况,并显示了模拟与测量之间的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信