{"title":"Study of Phase Formation In The Cute-As2te3System","authors":"Aliyev, Ismailova Sh, Kuluzade Es, Gashimov Km","doi":"10.31031/RDMS.2020.14.000844","DOIUrl":null,"url":null,"abstract":"It is known that compounds and solid solutions based on arsenic chalcogenides occupy an important place among the materials used in optoelectronics [1-3]. Copper chalcogenides and alloys based on them as thermionic and superionic materials are widely used in radio and electronic engineering [4,5]. Some quasi-binary sections with the participation of arsenic chalcogenides and the Cu-As-Se (Te) ternary system have been investigated in the literature [6,7]. However, there is no data in the literature on interactions in the CuTe-As2Te3 system. The aim of this work is to synthesize and study the interaction in the CuTe-As2Te3 system, as well as to search for new semiconducting phases and solid solutions. The CuTe compound melts incongruently at 367 °C and crystallizes in a rhombic syngony with unit cell parameters: a= 3.16; b= 4.07; c= 6.92 Å, sp. gr. Pmmm-D2h [8]. According to [9], the CuTe compound melts incongruently at 400 °C. The As2Te3 compound melts with an open maximum at 381 °C and crystallizes in monoclinic syngony with lattice parameters: a= 14.339; b= 4.006; c= 9.873Å, β= 95°, sp.gr. C2/m, the density is ρ= 6.25g/cm3 [10]. Experimental Part","PeriodicalId":20943,"journal":{"name":"Research & Development in Material Science","volume":"42 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research & Development in Material Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31031/RDMS.2020.14.000844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
It is known that compounds and solid solutions based on arsenic chalcogenides occupy an important place among the materials used in optoelectronics [1-3]. Copper chalcogenides and alloys based on them as thermionic and superionic materials are widely used in radio and electronic engineering [4,5]. Some quasi-binary sections with the participation of arsenic chalcogenides and the Cu-As-Se (Te) ternary system have been investigated in the literature [6,7]. However, there is no data in the literature on interactions in the CuTe-As2Te3 system. The aim of this work is to synthesize and study the interaction in the CuTe-As2Te3 system, as well as to search for new semiconducting phases and solid solutions. The CuTe compound melts incongruently at 367 °C and crystallizes in a rhombic syngony with unit cell parameters: a= 3.16; b= 4.07; c= 6.92 Å, sp. gr. Pmmm-D2h [8]. According to [9], the CuTe compound melts incongruently at 400 °C. The As2Te3 compound melts with an open maximum at 381 °C and crystallizes in monoclinic syngony with lattice parameters: a= 14.339; b= 4.006; c= 9.873Å, β= 95°, sp.gr. C2/m, the density is ρ= 6.25g/cm3 [10]. Experimental Part