{"title":"Mathematical model for tensile behaviour of hybrid continuous fibre cement composites","authors":"M. Kakemi, D.J. Hannant","doi":"10.1016/0010-4361(95)98912-5","DOIUrl":null,"url":null,"abstract":"<div><p>A mathematical model has been developed for the tensile behaviour of cement composites reinforced with two types of continuous and unidirectional aligned fibres. The model is based on the theory for single fibre composites proposed by Aveston, Cooper and Kelly. Theoretical curves have been obtained for the tensile properties of the polypropylene/glass fibre-reinforced cement composites by means of substituting parameters into the developed equations, and these curves were compared with experimental results for a limited range of fibre combinations. It is shown that to attain optimum hybrid effects for toughness and the first maximum point of the stress-strain curve, the correct fibre volume combinations should be included.</p></div>","PeriodicalId":100296,"journal":{"name":"Composites","volume":"26 9","pages":"Pages 637-643"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0010-4361(95)98912-5","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0010436195989125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
A mathematical model has been developed for the tensile behaviour of cement composites reinforced with two types of continuous and unidirectional aligned fibres. The model is based on the theory for single fibre composites proposed by Aveston, Cooper and Kelly. Theoretical curves have been obtained for the tensile properties of the polypropylene/glass fibre-reinforced cement composites by means of substituting parameters into the developed equations, and these curves were compared with experimental results for a limited range of fibre combinations. It is shown that to attain optimum hybrid effects for toughness and the first maximum point of the stress-strain curve, the correct fibre volume combinations should be included.