{"title":"High Yield Precision Transfer and Assembly of GaN µLEDs Using Laser Assisted Micro Transfer Printing","authors":"G. Ezhilarasu, A. Hanna, A. Paranjpe, S. Iyer","doi":"10.1109/ECTC.2019.00226","DOIUrl":null,"url":null,"abstract":"Rapid developments in GaN based µLED mass transfer & assembly have been driven by the demand for high resolution, bright and efficient displays for various solid-state lighting applications. There has however been a roadblock for the commercialization of this technology due to the poor transfer yields attained and high processing costs. The Laser Lift-Off (LLO) process used to release the µLEDs from their native substrate (sapphire) is non-trivial as it can easily crack the chips. In this work, we propose a new µLED transfer and assembly process based on adhesive bonding using a laser de-bondable thermoplastic polyimide (HD3007) that can potentially achieve transfer yields >99%. The LLO process is also done more reliably by using mechanically supported µLEDs which helps to attain nearly 100% LLO yield.","PeriodicalId":6726,"journal":{"name":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","volume":"56 1","pages":"1470-1474"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2019.00226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Rapid developments in GaN based µLED mass transfer & assembly have been driven by the demand for high resolution, bright and efficient displays for various solid-state lighting applications. There has however been a roadblock for the commercialization of this technology due to the poor transfer yields attained and high processing costs. The Laser Lift-Off (LLO) process used to release the µLEDs from their native substrate (sapphire) is non-trivial as it can easily crack the chips. In this work, we propose a new µLED transfer and assembly process based on adhesive bonding using a laser de-bondable thermoplastic polyimide (HD3007) that can potentially achieve transfer yields >99%. The LLO process is also done more reliably by using mechanically supported µLEDs which helps to attain nearly 100% LLO yield.