A Newton-like Midpoint Method for Solving Equations in Banach Space

Samundra Regmi, I. Argyros, Gagan Deep, Laxmi Rathour
{"title":"A Newton-like Midpoint Method for Solving Equations in Banach Space","authors":"Samundra Regmi, I. Argyros, Gagan Deep, Laxmi Rathour","doi":"10.3390/foundations3020014","DOIUrl":null,"url":null,"abstract":"The present paper includes the local and semilocal convergence analysis of a fourth-order method based on the quadrature formula in Banach spaces. The weaker hypotheses used are based only on the first Fréchet derivative. The new approach provides the residual errors, number of iterations, convergence radii, expected order of convergence, and estimates of the uniqueness of the solution. Such estimates are not provided in the approaches using Taylor expansions involving higher-order derivatives, which may not exist or may be very expensive or impossible to compute. Numerical examples, including a nonlinear integral equation and a partial differential equation, are provided to validate the theoretical results.","PeriodicalId":81291,"journal":{"name":"Foundations","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foundations3020014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The present paper includes the local and semilocal convergence analysis of a fourth-order method based on the quadrature formula in Banach spaces. The weaker hypotheses used are based only on the first Fréchet derivative. The new approach provides the residual errors, number of iterations, convergence radii, expected order of convergence, and estimates of the uniqueness of the solution. Such estimates are not provided in the approaches using Taylor expansions involving higher-order derivatives, which may not exist or may be very expensive or impossible to compute. Numerical examples, including a nonlinear integral equation and a partial differential equation, are provided to validate the theoretical results.
Banach空间中求解方程的类牛顿中点法
本文给出了Banach空间中基于正交公式的四阶方法的局部收敛性和半局部收敛性分析。所使用的较弱的假设仅基于第一个fr衍生物。该方法提供了残差、迭代次数、收敛半径、期望收敛阶和解的唯一性估计。在使用涉及高阶导数的泰勒展开式的方法中没有提供这样的估计,这些方法可能不存在,或者可能非常昂贵或无法计算。给出了一个非线性积分方程和一个偏微分方程的数值算例来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信