Machine Learning-Based Processor Adaptability Targeting Energy, Performance, and Reliability

A. L. Sartor, P. H. E. Becker, Stephan Wong, R. Marculescu, A. C. S. Beck
{"title":"Machine Learning-Based Processor Adaptability Targeting Energy, Performance, and Reliability","authors":"A. L. Sartor, P. H. E. Becker, Stephan Wong, R. Marculescu, A. C. S. Beck","doi":"10.1109/ISVLSI.2019.00037","DOIUrl":null,"url":null,"abstract":"Adaptive processors can dynamically change their hardware configuration by tuning several knobs that optimize a given metric, according to the current application. However, the complexity of choosing the best setup at runtime increases exponentially as more adaptive resources become available. Therefore, we propose a polymorphic VLIW processor coupled to a machine learning-based decision mechanism that quickly and accurately delivers the best trade-off in terms of energy, performance, and reliability. The proposed system predicts the best processor configuration in 97.37% of the test cases and achieves an efficiency that is close to an oracle (more than 93.30% on all benchmarks).","PeriodicalId":6703,"journal":{"name":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"12 1","pages":"158-163"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2019.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Adaptive processors can dynamically change their hardware configuration by tuning several knobs that optimize a given metric, according to the current application. However, the complexity of choosing the best setup at runtime increases exponentially as more adaptive resources become available. Therefore, we propose a polymorphic VLIW processor coupled to a machine learning-based decision mechanism that quickly and accurately delivers the best trade-off in terms of energy, performance, and reliability. The proposed system predicts the best processor configuration in 97.37% of the test cases and achieves an efficiency that is close to an oracle (more than 93.30% on all benchmarks).
基于机器学习的处理器适应性:能量、性能和可靠性
自适应处理器可以根据当前的应用程序,通过调整几个旋钮来优化给定的指标,从而动态地改变它们的硬件配置。然而,在运行时选择最佳设置的复杂性随着更多的自适应资源的可用性呈指数增长。因此,我们提出了一种多态VLIW处理器,结合基于机器学习的决策机制,快速准确地在能源、性能和可靠性方面提供最佳权衡。提出的系统在97.37%的测试用例中预测出最佳的处理器配置,并实现了接近oracle的效率(在所有基准测试中超过93.30%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信