A. L. Sartor, P. H. E. Becker, Stephan Wong, R. Marculescu, A. C. S. Beck
{"title":"Machine Learning-Based Processor Adaptability Targeting Energy, Performance, and Reliability","authors":"A. L. Sartor, P. H. E. Becker, Stephan Wong, R. Marculescu, A. C. S. Beck","doi":"10.1109/ISVLSI.2019.00037","DOIUrl":null,"url":null,"abstract":"Adaptive processors can dynamically change their hardware configuration by tuning several knobs that optimize a given metric, according to the current application. However, the complexity of choosing the best setup at runtime increases exponentially as more adaptive resources become available. Therefore, we propose a polymorphic VLIW processor coupled to a machine learning-based decision mechanism that quickly and accurately delivers the best trade-off in terms of energy, performance, and reliability. The proposed system predicts the best processor configuration in 97.37% of the test cases and achieves an efficiency that is close to an oracle (more than 93.30% on all benchmarks).","PeriodicalId":6703,"journal":{"name":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"12 1","pages":"158-163"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2019.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Adaptive processors can dynamically change their hardware configuration by tuning several knobs that optimize a given metric, according to the current application. However, the complexity of choosing the best setup at runtime increases exponentially as more adaptive resources become available. Therefore, we propose a polymorphic VLIW processor coupled to a machine learning-based decision mechanism that quickly and accurately delivers the best trade-off in terms of energy, performance, and reliability. The proposed system predicts the best processor configuration in 97.37% of the test cases and achieves an efficiency that is close to an oracle (more than 93.30% on all benchmarks).