Identification of yield contributing traits and genotypes to drought tolerance in finger millet (Eleusine coracana L. Gaertn.)

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Y. A. Nanja Reddy
{"title":"Identification of yield contributing traits and genotypes to drought tolerance in finger millet (Eleusine coracana L. Gaertn.)","authors":"Y. A. Nanja Reddy","doi":"10.1017/s1479262123000011","DOIUrl":null,"url":null,"abstract":"\n Screening of germplasm for specific traits is a continuous pre-breeding process in deriving the drought-tolerant donors required for crop improvement. The study evaluated 17 medium-late duration finger millet genotypes under drought stress (DS) for 28 days during the reproductive stage to identify the traits and genotypes for drought tolerance using different statistical analysis. The photosynthetic rate (by 26.3%), stomatal conductance (by 26.4%), transpiration rate (by 24.8%) and grain yield (by 13.2%) were decreased and found sensitive to DS, but the leaf temperature was increased (4.7%). From the path analysis and multiple linear regression analysis, the mean ear weight and productive tillers were found to contribute to the grain yield significantly under well-watered conditions. While under DS conditions, the mean ear weight, productive tillers and threshing percentage equally contributed to grain yield. Based on the ranking of traits significantly contributing to grain yield, the genotype GE-4683 with a higher mean ear weight (10.65 g) was found superior to the popular variety, GPU-28. The Multiple linear regression equation predicts the possibility to increase the yield of GPU-28 under DS from the existing 360.0 to 459.5 g per square metre (by 29.1%) by the incorporation of three productive tillers instead of the existing two tillers per plant in the MLR equation. An additional 1.0 g of mean ear weight will be able to predict an increased grain yield from 360.0 to 392.0 gm−2, equivalent to 3.60 to 3.92 t/ha (by 9.4%).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/s1479262123000011","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Screening of germplasm for specific traits is a continuous pre-breeding process in deriving the drought-tolerant donors required for crop improvement. The study evaluated 17 medium-late duration finger millet genotypes under drought stress (DS) for 28 days during the reproductive stage to identify the traits and genotypes for drought tolerance using different statistical analysis. The photosynthetic rate (by 26.3%), stomatal conductance (by 26.4%), transpiration rate (by 24.8%) and grain yield (by 13.2%) were decreased and found sensitive to DS, but the leaf temperature was increased (4.7%). From the path analysis and multiple linear regression analysis, the mean ear weight and productive tillers were found to contribute to the grain yield significantly under well-watered conditions. While under DS conditions, the mean ear weight, productive tillers and threshing percentage equally contributed to grain yield. Based on the ranking of traits significantly contributing to grain yield, the genotype GE-4683 with a higher mean ear weight (10.65 g) was found superior to the popular variety, GPU-28. The Multiple linear regression equation predicts the possibility to increase the yield of GPU-28 under DS from the existing 360.0 to 459.5 g per square metre (by 29.1%) by the incorporation of three productive tillers instead of the existing two tillers per plant in the MLR equation. An additional 1.0 g of mean ear weight will be able to predict an increased grain yield from 360.0 to 392.0 gm−2, equivalent to 3.60 to 3.92 t/ha (by 9.4%).
谷子(Eleusine coracana L. Gaertn.)耐旱产量贡献性状及基因型鉴定
为获得作物改良所需的耐旱供体,对特定性状的种质筛选是一个持续的前育种过程。本研究利用干旱胁迫28 d对17个中晚育五谷基因型进行了评价,利用不同的统计分析方法确定了五谷的耐旱性状和基因型。叶片光合速率(降低26.3%)、气孔导度(降低26.4%)、蒸腾速率(降低24.8%)和籽粒产量(降低13.2%)对DS敏感,但叶片温度升高4.7%。通径分析和多元线性回归分析表明,丰水条件下,平均穗重和有效分蘖对籽粒产量的贡献显著。而在DS条件下,平均穗重、有效分蘖数和脱粒率对籽粒产量的贡献相同。根据对籽粒产量有显著影响的性状排序,平均穗重(10.65 g)较高的基因型GE-4683优于常用品种GPU-28。多元线性回归方程预测了将GPU-28在DS下的产量从现有的每平方米360.0克提高到每平方米459.5克(提高29.1%)的可能性,方法是在MLR方程中采用三个生产性分蘖,而不是现有的每株两个分蘖。平均穗重每增加1.0克,籽粒产量将从360.0克增加到392.0克,相当于3.60吨/公顷增加到3.92吨/公顷(提高9.4%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信