{"title":"Braking force characteristics and multi-objective optimization of eddy current brake under intensive impact load","authors":"Shimin Liang, Guolai Yang, A. Al-Zahrani, Lei Li","doi":"10.3233/jae-220138","DOIUrl":null,"url":null,"abstract":"As a new type of permanent magnet arrangement in the eddy current brake (ECB), the Halbach array is gradually gaining attention thanks to its excellent magnetic field utilization. However, the absence of an accurate theoretical model causes great distress in the design phase of the ECB. To tackle this, this article establishes a subdomain model that can intuitively observe the influence of structural and material parameters on the magnetic field and eddy current braking force. The accuracy of the analytical model is verified by the finite element method (FEM). The calculation results show that the eddy current braking force is the largest when the relative velocity of the primary and secondary reaches the critical velocity value. The recoil equation of motion is introduced to analyze the change law of the braking force under intensive impact load. A small prototype impact test platform was set up to analyze the change of braking characteristics of the ECB under the impact load. To reduce the weight of the ECB, the multi-objective optimization of the ECB parameters is carried out. The vital structural mass of the ECB is reduced by 19.44% while meeting the recoil requirements.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"695 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-220138","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
As a new type of permanent magnet arrangement in the eddy current brake (ECB), the Halbach array is gradually gaining attention thanks to its excellent magnetic field utilization. However, the absence of an accurate theoretical model causes great distress in the design phase of the ECB. To tackle this, this article establishes a subdomain model that can intuitively observe the influence of structural and material parameters on the magnetic field and eddy current braking force. The accuracy of the analytical model is verified by the finite element method (FEM). The calculation results show that the eddy current braking force is the largest when the relative velocity of the primary and secondary reaches the critical velocity value. The recoil equation of motion is introduced to analyze the change law of the braking force under intensive impact load. A small prototype impact test platform was set up to analyze the change of braking characteristics of the ECB under the impact load. To reduce the weight of the ECB, the multi-objective optimization of the ECB parameters is carried out. The vital structural mass of the ECB is reduced by 19.44% while meeting the recoil requirements.
期刊介绍:
The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are:
Physics and mechanics of electromagnetic materials and devices
Computational electromagnetics in materials and devices
Applications of electromagnetic fields and materials
The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics.
The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.