Isopropanol biodegradation by immobilized Paracoccus denitrificans in a three-phase fluidized bed reactor

Yucong Geng, Yuanjie Deng, Feilong Chen, Hong Jin, T. Hou, Ke Tao
{"title":"Isopropanol biodegradation by immobilized Paracoccus denitrificans in a three-phase fluidized bed reactor","authors":"Yucong Geng, Yuanjie Deng, Feilong Chen, Hong Jin, T. Hou, Ke Tao","doi":"10.1080/10826068.2015.1135446","DOIUrl":null,"url":null,"abstract":"ABSTRACT A three-phase bed bioreactor including a mix of immobilized microbes was used to degrade isopropanol (IPA). The immobilization method was studied and cells immobilized with calcium alginate, polyvinyl alcohol, activated carbon, and SiO2 were demonstrated to be the best immobilization method for the degradation of 90% of 2 g/L IPA in just 4 days, 1 day earlier than with free cells. Acetone was monitored as an indicator of microbial IPA utilization as the major intermediate of aerobic IPA biodegradation. The bioreactor was operated at hydraulic retention time (HRT) values of 32, 24, 16, 12, and 10 hr, which correspond to membrane fluxes of 0.03, 0.04, 0.06, 0.08, and 0.10 L/m2/hr, respectively. The chemical oxygen demand (COD) removal efficiencies were maintained at 98.0, 97.8, 89.1, 80.6, and 71.1% at a HRT of 32, 24, 16, 12, and 10 hr, respectively, while the IPA degradations were 98.6, 98.3, 90.3, 81.6, and 73.3%, respectively. With a comprehensive consideration of COD removal and economy, the optimal HRT was 24 hr. The results demonstrate the potential of immobilized mixed bacterial consortium in a three-phase fluidized bed reactor system for the aerobic treatment of wastewater containing IPA.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":"23 1","pages":"747 - 754"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10826068.2015.1135446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

ABSTRACT A three-phase bed bioreactor including a mix of immobilized microbes was used to degrade isopropanol (IPA). The immobilization method was studied and cells immobilized with calcium alginate, polyvinyl alcohol, activated carbon, and SiO2 were demonstrated to be the best immobilization method for the degradation of 90% of 2 g/L IPA in just 4 days, 1 day earlier than with free cells. Acetone was monitored as an indicator of microbial IPA utilization as the major intermediate of aerobic IPA biodegradation. The bioreactor was operated at hydraulic retention time (HRT) values of 32, 24, 16, 12, and 10 hr, which correspond to membrane fluxes of 0.03, 0.04, 0.06, 0.08, and 0.10 L/m2/hr, respectively. The chemical oxygen demand (COD) removal efficiencies were maintained at 98.0, 97.8, 89.1, 80.6, and 71.1% at a HRT of 32, 24, 16, 12, and 10 hr, respectively, while the IPA degradations were 98.6, 98.3, 90.3, 81.6, and 73.3%, respectively. With a comprehensive consideration of COD removal and economy, the optimal HRT was 24 hr. The results demonstrate the potential of immobilized mixed bacterial consortium in a three-phase fluidized bed reactor system for the aerobic treatment of wastewater containing IPA.
固定化反硝化副球菌在三相流化床反应器中生物降解异丙醇的研究
采用固定化微生物混合三相床生物反应器降解异丙醇(IPA)。研究结果表明,海藻酸钙、聚乙烯醇、活性炭和二氧化硅固定的细胞在4天内就能降解90%的2 g/L IPA,比自由细胞早1天。丙酮作为好氧IPA生物降解的主要中间体,作为微生物利用IPA的指标进行了监测。水力停留时间(HRT)分别为32、24、16、12和10小时,对应的膜通量分别为0.03、0.04、0.06、0.08和0.10 L/m2/hr。在HRT为32、24、16、12和10 h时,化学需氧量(COD)的去除率分别为98.0、97.8、89.1、80.6和71.1%,IPA的去除率分别为98.6、98.3、90.3、81.6和73.3%。综合考虑COD去除率和经济性,最佳HRT为24小时。结果表明,固定化混合菌群在三相流化床反应器系统中具有处理含IPA废水的好氧潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信