Genetic algorithm based dynamic parameter learning for text retrieval

Chuan Lin, Shaoping Ma, Min Zhang, Yijiang Jin
{"title":"Genetic algorithm based dynamic parameter learning for text retrieval","authors":"Chuan Lin, Shaoping Ma, Min Zhang, Yijiang Jin","doi":"10.1109/ICMLC.2002.1174538","DOIUrl":null,"url":null,"abstract":"In information retrieval (IR) systems, such as Okapi, there are always a variety of parameters to be set manually which are data-dependent and most sensitive to retrieval performance. Therefore, it will be ideal to deploy an automatic parameter learning mechanism. In this paper, we propose such a method based on the genetic algorithm. We apply our approach to the Okapi system. Experimental results on TREC2001 testing data indicate that our algorithm is effective to adjust system parameters and improve the retrieval performance significantly.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"51 1","pages":"1024-1027 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1174538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In information retrieval (IR) systems, such as Okapi, there are always a variety of parameters to be set manually which are data-dependent and most sensitive to retrieval performance. Therefore, it will be ideal to deploy an automatic parameter learning mechanism. In this paper, we propose such a method based on the genetic algorithm. We apply our approach to the Okapi system. Experimental results on TREC2001 testing data indicate that our algorithm is effective to adjust system parameters and improve the retrieval performance significantly.
基于遗传算法的动态参数学习文本检索
在诸如Okapi这样的信息检索系统中,总是需要手动设置各种参数,这些参数依赖于数据,对检索性能最敏感。因此,部署自动参数学习机制将是理想的。在本文中,我们提出了一种基于遗传算法的方法。我们将我们的方法应用于霍加皮系统。在TREC2001测试数据上的实验结果表明,该算法可以有效地调整系统参数,显著提高检索性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信