J. Miralles, M. López-Sánchez, Maria Salamó, Pedro Avila, J. Rodríguez-Aguilar
{"title":"Robust Regulation Adaptation in Multi-Agent Systems","authors":"J. Miralles, M. López-Sánchez, Maria Salamó, Pedro Avila, J. Rodríguez-Aguilar","doi":"10.1145/2517328","DOIUrl":null,"url":null,"abstract":"Adaptive organisation-centred multi-agent systems can dynamically modify their organisational components to better accomplish their goals. Our research line proposes an abstract distributed architecture (2-LAMA) to endow an organisation with adaptation capabilities. This article focuses on regulation-adaptation based on a machine learning approach, in which adaptation is learned by applying a tailored case-based reasoning method. We evaluate the robustness of the system when it is populated by non compliant agents. The evaluation is performed in a peer-to-peer sharing network scenario. Results show that our proposal significantly improves system performance and can cope with regulation violators without incorporating any specific regulation-compliance enforcement mechanisms.","PeriodicalId":50919,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems","volume":"12 11 1","pages":"13:1-13:27"},"PeriodicalIF":2.2000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/2517328","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 20
Abstract
Adaptive organisation-centred multi-agent systems can dynamically modify their organisational components to better accomplish their goals. Our research line proposes an abstract distributed architecture (2-LAMA) to endow an organisation with adaptation capabilities. This article focuses on regulation-adaptation based on a machine learning approach, in which adaptation is learned by applying a tailored case-based reasoning method. We evaluate the robustness of the system when it is populated by non compliant agents. The evaluation is performed in a peer-to-peer sharing network scenario. Results show that our proposal significantly improves system performance and can cope with regulation violators without incorporating any specific regulation-compliance enforcement mechanisms.
期刊介绍:
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community -- and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors.
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community - and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. Contributions are expected to be based on sound and innovative theoretical models, algorithms, engineering and programming techniques, infrastructures and systems, or technological and application experiences.