DeepBanglaNet: A Deep Convolutional Neural Network to Recognize Bengali Handwritten Digits

Tanvir Mahmud, Abdul Rakib Hossain, S. Fattah
{"title":"DeepBanglaNet: A Deep Convolutional Neural Network to Recognize Bengali Handwritten Digits","authors":"Tanvir Mahmud, Abdul Rakib Hossain, S. Fattah","doi":"10.1109/TENSYMP50017.2020.9230922","DOIUrl":null,"url":null,"abstract":"Classifying handwritten digits is one of the most trending topics of research in the study of the automated text recognition system. The problem is more challenging in the case of Bengali digits due to additional complexities arising from similarity among various digits along with a wide variety of styles of hand-writings. In this paper, an end-to-end deep convolutional neural network, named as DeepBanglaNet, is proposed to classify Bengali handwritten digits. The proposed network utilizes various state-of-the-art optimization algorithms for eliminating vanishing/exploding gradient problems while extracting the global features effectively required for proper recognition of handwritten digits. This results in a very efficient model providing state-of-the-art accuracy of 99.43% on the NumtaDB database and outperforms all other existing models in all traditional evaluation metrics.","PeriodicalId":6721,"journal":{"name":"2020 IEEE Region 10 Symposium (TENSYMP)","volume":"31 1","pages":"742-745"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENSYMP50017.2020.9230922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Classifying handwritten digits is one of the most trending topics of research in the study of the automated text recognition system. The problem is more challenging in the case of Bengali digits due to additional complexities arising from similarity among various digits along with a wide variety of styles of hand-writings. In this paper, an end-to-end deep convolutional neural network, named as DeepBanglaNet, is proposed to classify Bengali handwritten digits. The proposed network utilizes various state-of-the-art optimization algorithms for eliminating vanishing/exploding gradient problems while extracting the global features effectively required for proper recognition of handwritten digits. This results in a very efficient model providing state-of-the-art accuracy of 99.43% on the NumtaDB database and outperforms all other existing models in all traditional evaluation metrics.
DeepBanglaNet:一个识别孟加拉手写数字的深度卷积神经网络
手写体数字分类是文本自动识别系统研究的热点之一。这个问题在孟加拉数字的情况下更具挑战性,因为各种数字之间的相似性以及各种手写风格带来了额外的复杂性。本文提出了一种端到端的深度卷积神经网络,命名为DeepBanglaNet,用于孟加拉语手写体数字的分类。所提出的网络利用各种最先进的优化算法来消除消失/爆炸梯度问题,同时提取正确识别手写数字所需的有效全局特征。这产生了一个非常有效的模型,在NumtaDB数据库上提供了99.43%的最新精度,并且在所有传统评估指标中优于所有其他现有模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信