{"title":"Performance of metal free g-C3N4 reinforced graphene oxide bio-composite for the removal of persistent dyes","authors":"E. Jackcina Stobel Christy, Anitha Pius","doi":"10.1016/j.enceco.2021.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>Graphitic carbon nitride/graphene oxide (g-C<sub>3</sub>N<sub>4</sub>@GO/ Carboxy methylcellulose) based bio-composite was prepared, characterized and tested for the degradation of toxic dyes. Cellulose was extracted from coconut coir/spathe through acid hydrolysis and ultrasonication method. Followed by modification using the carboxymethylation process and subsequently loaded with graphene oxide and g-C<sub>3</sub>N<sub>4</sub>. The prepared carboxy methylcellulose (CMC), g-C<sub>3</sub>N<sub>4</sub>@GO, g-C<sub>3</sub>N<sub>4</sub>@GO/CMC biocomposite were analyzed by Fourier transform infrared spectrometer (FTIR), scanning electron microscope (SEM) with energy dispersive X-ray analysis (EDX), X-ray diffractometer (XRD) and thermogravimetric analyzer (TGA). The photocatalytic activity of synthesized biocomposite was investigated for the degradation of basic green 4 (BG 4) and basic blue 9 (BB 9) dyes from aqueous solution using batch experiments under sunlight irradiation. The percentage of degradation of BG4 and BB9 was 94 and 98% under sunlight irradiation for 60 and 50 min in basic medium respectively. The photodegradation process is well described by the Langmuir- Hinshelwood and pseudo-first-order kinetic models. From the active species trapping experiment, it was found that the hole (h<sup>+</sup>), superoxide radical (O<sub>2</sub><sup>·−</sup>), and hydroxyl radical (OH<sup>.</sup>) played a significant role in the degradation of dyes and a possible degradation path is discussed with the results obtained from LC-MS. Moreover, the biocomposite showed higher stability and reusability for the degradation of dyes upto five cycles. Thus, the prepared g-C<sub>3</sub>N<sub>4</sub>@GO/CMC biocomposite can serve as a sustianable material in the current scenario for removing dyes.</p></div>","PeriodicalId":100480,"journal":{"name":"Environmental Chemistry and Ecotoxicology","volume":"3 ","pages":"Pages 220-233"},"PeriodicalIF":9.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.enceco.2021.06.003","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry and Ecotoxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590182621000163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
Graphitic carbon nitride/graphene oxide (g-C3N4@GO/ Carboxy methylcellulose) based bio-composite was prepared, characterized and tested for the degradation of toxic dyes. Cellulose was extracted from coconut coir/spathe through acid hydrolysis and ultrasonication method. Followed by modification using the carboxymethylation process and subsequently loaded with graphene oxide and g-C3N4. The prepared carboxy methylcellulose (CMC), g-C3N4@GO, g-C3N4@GO/CMC biocomposite were analyzed by Fourier transform infrared spectrometer (FTIR), scanning electron microscope (SEM) with energy dispersive X-ray analysis (EDX), X-ray diffractometer (XRD) and thermogravimetric analyzer (TGA). The photocatalytic activity of synthesized biocomposite was investigated for the degradation of basic green 4 (BG 4) and basic blue 9 (BB 9) dyes from aqueous solution using batch experiments under sunlight irradiation. The percentage of degradation of BG4 and BB9 was 94 and 98% under sunlight irradiation for 60 and 50 min in basic medium respectively. The photodegradation process is well described by the Langmuir- Hinshelwood and pseudo-first-order kinetic models. From the active species trapping experiment, it was found that the hole (h+), superoxide radical (O2·−), and hydroxyl radical (OH.) played a significant role in the degradation of dyes and a possible degradation path is discussed with the results obtained from LC-MS. Moreover, the biocomposite showed higher stability and reusability for the degradation of dyes upto five cycles. Thus, the prepared g-C3N4@GO/CMC biocomposite can serve as a sustianable material in the current scenario for removing dyes.