Large cliques and independent sets all over the place

N. Alon, M. Buci'c, B. Sudakov
{"title":"Large cliques and independent sets all over the place","authors":"N. Alon, M. Buci'c, B. Sudakov","doi":"10.1090/proc/15323","DOIUrl":null,"url":null,"abstract":"We study the following question raised by Erdős and Hajnal in the early 90's. Over all $n$-vertex graphs $G$ what is the smallest possible value of $m$ for which any $m$ vertices of $G$ contain both a clique and an independent set of size $\\log n$? We construct examples showing that $m$ is at most $2^{2^{(\\log\\log n)^{1/2+o(1)}}}$ obtaining a twofold sub-polynomial improvement over the upper bound of about $\\sqrt{n}$ coming from the natural guess, the random graph. Our (probabilistic) construction gives rise to new examples of Ramsey graphs, which while having no very large homogenous subsets contain both cliques and independent sets of size $\\log n$ in any small subset of vertices. This is very far from being true in random graphs. Our proofs are based on an interplay between taking lexicographic products and using randomness.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the following question raised by Erdős and Hajnal in the early 90's. Over all $n$-vertex graphs $G$ what is the smallest possible value of $m$ for which any $m$ vertices of $G$ contain both a clique and an independent set of size $\log n$? We construct examples showing that $m$ is at most $2^{2^{(\log\log n)^{1/2+o(1)}}}$ obtaining a twofold sub-polynomial improvement over the upper bound of about $\sqrt{n}$ coming from the natural guess, the random graph. Our (probabilistic) construction gives rise to new examples of Ramsey graphs, which while having no very large homogenous subsets contain both cliques and independent sets of size $\log n$ in any small subset of vertices. This is very far from being true in random graphs. Our proofs are based on an interplay between taking lexicographic products and using randomness.
到处都是大集团和独立集团
我们研究了Erdős和Hajnal在90年代初提出的问题。在所有的$n$顶点图$G$中,$m$的最小可能值是什么?对于$G$的任何$m$顶点既包含一个团又包含一个独立的大小集合$\log n$ ?我们构造的例子表明$m$最多是$2^{2^{(\log\log n)^{1/2+o(1)}}}$,在大约$\sqrt{n}$的上界上得到了两倍的子多项式改进,这来自于自然猜测,即随机图。我们的(概率)构造产生了Ramsey图的新示例,虽然没有非常大的同质子集,但在任何小的顶点子集中都包含团和大小为$\log n$的独立集。这在随机图中是远远不成立的。我们的证明是基于采用词典产品和使用随机性之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信