Z. Bencharef, A. Chala, R. Messemeche, Y. Benkhetta
{"title":"The physical properties of spinel cubic Co3O4 thin films prepared by a PSM","authors":"Z. Bencharef, A. Chala, R. Messemeche, Y. Benkhetta","doi":"10.3233/mgc-210090","DOIUrl":null,"url":null,"abstract":"Undoped and Mn-doped Co3O4 films were deposited on heated glasses substrates (TS = 400°C) using a homemade pneumatic spray method (PSM). The solution concentration and deposition time are 0.1 M and 4 min respectively. The effect of manganese doping concentration on structural, optical and electrical properties of cobalt oxide were investigated. The elaborated films were characterized by X-ray diffraction, UV-Vis spectroscopy, atomic force microscopy (AFM) the three-dimensional (3D), energy dispersive spectroscopy (EDS), and four points probe measurements. The XRD study showed that all films were polycrystalline consisting with spinel cubic phase orientated along to (111) plane. The lattice strain and crystallite size were estimated by Williamson-Hall method. The morphology of Mn-doped Co3O4 thin films shows a homogeneous surface with straight acicular nanorods (SANRs). EDS analysis showed the presence of peaks associated with Co, O and Mn elements which confirm the composition of the thin films. The optical band gaps varies from 1.42±0.07 to 1.47±0.07 eV of Egop1and Egop2 varies from 1.87±0.10 to 2.11±0.11 eV. In addition, the electrical measurement show a maximum electrical conductivity (σ= 15.54±0.78 (Ω.cm) - 1) at 6% wt of Mn.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":"74 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3233/mgc-210090","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Undoped and Mn-doped Co3O4 films were deposited on heated glasses substrates (TS = 400°C) using a homemade pneumatic spray method (PSM). The solution concentration and deposition time are 0.1 M and 4 min respectively. The effect of manganese doping concentration on structural, optical and electrical properties of cobalt oxide were investigated. The elaborated films were characterized by X-ray diffraction, UV-Vis spectroscopy, atomic force microscopy (AFM) the three-dimensional (3D), energy dispersive spectroscopy (EDS), and four points probe measurements. The XRD study showed that all films were polycrystalline consisting with spinel cubic phase orientated along to (111) plane. The lattice strain and crystallite size were estimated by Williamson-Hall method. The morphology of Mn-doped Co3O4 thin films shows a homogeneous surface with straight acicular nanorods (SANRs). EDS analysis showed the presence of peaks associated with Co, O and Mn elements which confirm the composition of the thin films. The optical band gaps varies from 1.42±0.07 to 1.47±0.07 eV of Egop1and Egop2 varies from 1.87±0.10 to 2.11±0.11 eV. In addition, the electrical measurement show a maximum electrical conductivity (σ= 15.54±0.78 (Ω.cm) - 1) at 6% wt of Mn.
期刊介绍:
Main Group Chemistry is intended to be a primary resource for all chemistry, engineering, biological, and materials researchers in both academia and in industry with an interest in the elements from the groups 1, 2, 12–18, lanthanides and actinides. The journal is committed to maintaining a high standard for its publications. This will be ensured by a rigorous peer-review process with most articles being reviewed by at least one editorial board member. Additionally, all manuscripts will be proofread and corrected by a dedicated copy editor located at the University of Kentucky.