Deep Learning for Edge Computing: Current Trends, Cross-Layer Optimizations, and Open Research Challenges

Alberto Marchisio, Muhammad Abdullah Hanif, Faiq Khalid, George Plastiras, C. Kyrkou, T. Theocharides, M. Shafique
{"title":"Deep Learning for Edge Computing: Current Trends, Cross-Layer Optimizations, and Open Research Challenges","authors":"Alberto Marchisio, Muhammad Abdullah Hanif, Faiq Khalid, George Plastiras, C. Kyrkou, T. Theocharides, M. Shafique","doi":"10.1109/ISVLSI.2019.00105","DOIUrl":null,"url":null,"abstract":"In the Machine Learning era, Deep Neural Networks (DNNs) have taken the spotlight, due to their unmatchable performance in several applications, such as image processing, computer vision, and natural language processing. However, as DNNs grow in their complexity, their associated energy consumption becomes a challenging problem. Such challenge heightens for edge computing, where the computing devices are resource-constrained while operating on limited energy budget. Therefore, specialized optimizations for deep learning have to be performed at both software and hardware levels. In this paper, we comprehensively survey the current trends of such optimizations and discuss key open research mid-term and long-term challenges.","PeriodicalId":6703,"journal":{"name":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"1 1","pages":"553-559"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2019.00105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

Abstract

In the Machine Learning era, Deep Neural Networks (DNNs) have taken the spotlight, due to their unmatchable performance in several applications, such as image processing, computer vision, and natural language processing. However, as DNNs grow in their complexity, their associated energy consumption becomes a challenging problem. Such challenge heightens for edge computing, where the computing devices are resource-constrained while operating on limited energy budget. Therefore, specialized optimizations for deep learning have to be performed at both software and hardware levels. In this paper, we comprehensively survey the current trends of such optimizations and discuss key open research mid-term and long-term challenges.
边缘计算的深度学习:当前趋势、跨层优化和开放研究挑战
然而,随着深度神经网络复杂性的增长,其相关的能量消耗成为一个具有挑战性的问题。对于边缘计算来说,这种挑战更加严峻,因为计算设备在有限的能源预算下运行时资源受限。因此,深度学习的专门优化必须在软件和硬件层面进行。在本文中,我们全面调查了这类优化的当前趋势,并讨论了重点开放研究的中期和长期挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信