On the Girth of Three-Dimensional Algebraically Defined Graphs with Multiplicatively Separable Functions

IF 0.7 4区 数学 Q2 MATHEMATICS
Alex Kodess, Brian G. Kronenthal, Tony W. H. Wong
{"title":"On the Girth of Three-Dimensional Algebraically Defined Graphs with Multiplicatively Separable Functions","authors":"Alex Kodess, Brian G. Kronenthal, Tony W. H. Wong","doi":"10.37236/9749","DOIUrl":null,"url":null,"abstract":"For a field $\\mathbb{F}$ and functions $f,g,h,j\\colon\\mathbb{F}\\to \\mathbb{F}$, we define $\\Gamma_\\mathbb{F}(f(X)h(Y),g(X) j(Y))$ to be a bipartite graph where each partite set is a copy of $\\mathbb{F}^3$, and a vertex $(a,a_2,a_3)$ in the first partite set is adjacent to a vertex $[x,x_2,x_3]$ in the second partite set if and only if \\[a_2+x_2=f(a)h(x) \\quad \\text{and} \\quad a_3+x_3=g(a)j(x).\\] In this paper, we completely classify all such graphs by girth in the case $h=j$ (subject to some mild restrictions on $h$). We also present a partial classification when $h\\neq j$ and provide some applications.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"3 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/9749","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a field $\mathbb{F}$ and functions $f,g,h,j\colon\mathbb{F}\to \mathbb{F}$, we define $\Gamma_\mathbb{F}(f(X)h(Y),g(X) j(Y))$ to be a bipartite graph where each partite set is a copy of $\mathbb{F}^3$, and a vertex $(a,a_2,a_3)$ in the first partite set is adjacent to a vertex $[x,x_2,x_3]$ in the second partite set if and only if \[a_2+x_2=f(a)h(x) \quad \text{and} \quad a_3+x_3=g(a)j(x).\] In this paper, we completely classify all such graphs by girth in the case $h=j$ (subject to some mild restrictions on $h$). We also present a partial classification when $h\neq j$ and provide some applications.
具有乘法可分函数的三维代数定义图的周长
对于域$\mathbb{F}$和函数$f,g,h,j\colon\mathbb{F}\to \mathbb{F}$,我们定义$\Gamma_\mathbb{F}(f(X)h(Y),g(X) j(Y))$是一个二部图,其中每个部集都是$\mathbb{F}^3$的副本,并且第一部分集中的一个顶点$(a,a_2,a_3)$与第二部分集中的一个顶点$[x,x_2,x_3]$相邻,当且仅当\[a_2+x_2=f(a)h(x) \quad \text{and} \quad a_3+x_3=g(a)j(x).\]。本文在$h=j$的情况下,我们通过周长对所有这样的图进行了完全分类(在$h$上有一些温和的限制)。本文还对$h\neq j$进行了部分分类,并给出了一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信