Extracting Protein-Protein Interaction from Biomedical Text Using Additional Shallow Parsing Information

Huanhuan Yu, Longhua Qian, Guodong Zhou, Qiaoming Zhu
{"title":"Extracting Protein-Protein Interaction from Biomedical Text Using Additional Shallow Parsing Information","authors":"Huanhuan Yu, Longhua Qian, Guodong Zhou, Qiaoming Zhu","doi":"10.1109/BMEI.2009.5302220","DOIUrl":null,"url":null,"abstract":"This paper explores protein-protein interaction extraction from biomedical literature using Support Vector Machines (SVM). Besides common lexical features, various overlap features and base phrase chunking information are used to improve the performance. Evaluation on the AIMed corpus shows that our feature-based method achieves very encouraging performances of 68.6 and 51.0 in F-measure with 10-fold pairwise cross-validation and 10-fold document-wise cross-validation respectively, which are comparable with other state-of-the-art feature-based methods. Keywords-Protein-Protein Interaction; SVM; Shallow Parsing Information","PeriodicalId":6389,"journal":{"name":"2009 2nd International Conference on Biomedical Engineering and Informatics","volume":"32 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd International Conference on Biomedical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2009.5302220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper explores protein-protein interaction extraction from biomedical literature using Support Vector Machines (SVM). Besides common lexical features, various overlap features and base phrase chunking information are used to improve the performance. Evaluation on the AIMed corpus shows that our feature-based method achieves very encouraging performances of 68.6 and 51.0 in F-measure with 10-fold pairwise cross-validation and 10-fold document-wise cross-validation respectively, which are comparable with other state-of-the-art feature-based methods. Keywords-Protein-Protein Interaction; SVM; Shallow Parsing Information
利用附加的浅解析信息从生物医学文本中提取蛋白质相互作用
本文利用支持向量机(SVM)从生物医学文献中提取蛋白质-蛋白质相互作用。除了常用的词汇特征外,还使用了各种重叠特征和基短语分块信息来提高性能。对aims语料库的评估表明,我们的基于特征的方法在10倍成对交叉验证和10倍文档交叉验证的F-measure中分别达到了68.6和51.0,这与其他最先进的基于特征的方法相当。Keywords-Protein-Protein互动;支持向量机;浅层解析信息
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信