{"title":"High-sensitivity erectrochemical sensor using pyrolyzed polymer-gold 3D probe arrays for spatial chemical sensing","authors":"W. Tonomura, Y. Mori, S. Konishi","doi":"10.1109/MEMSYS.2013.6474419","DOIUrl":null,"url":null,"abstract":"This paper reports spatially arranged pyrolyzed polymer-gold probes to allow high-sensitivity monitoring of spatially distributed chemicals. Pyrolyzed polymer is a promising carbon material for applications of electrochemical sensors. Out-of-plane gold microelectrodes coated by polymer film (parylene-C) are transformed to conductive carbon-gold materials by annealing at 1000°C for 2h in a vacuum chamber. 3D probe technology using wire bonding makes it possible to provide the spatially arranged microelectrodes. This paper demonstrates pyrolyzed polymer-gold 3D probes have high sensitivity and wider electrochemical potential window than typical electrochemical electrode materials such as gold to realize spatial chemical sensing.","PeriodicalId":92162,"journal":{"name":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","volume":"50 1","pages":"1011-1014"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2013.6474419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper reports spatially arranged pyrolyzed polymer-gold probes to allow high-sensitivity monitoring of spatially distributed chemicals. Pyrolyzed polymer is a promising carbon material for applications of electrochemical sensors. Out-of-plane gold microelectrodes coated by polymer film (parylene-C) are transformed to conductive carbon-gold materials by annealing at 1000°C for 2h in a vacuum chamber. 3D probe technology using wire bonding makes it possible to provide the spatially arranged microelectrodes. This paper demonstrates pyrolyzed polymer-gold 3D probes have high sensitivity and wider electrochemical potential window than typical electrochemical electrode materials such as gold to realize spatial chemical sensing.