{"title":"Teaching Qubits to Sing: Mission Impossible?","authors":"E. Miranda, Brian N. Siegelwax","doi":"10.48550/arXiv.2207.08225","DOIUrl":null,"url":null,"abstract":"This paper introduces a system that learns to sing new tunes by listening to examples. It extracts sequencing rules from input music and uses these rules to generate new tunes, which are sung by a vocal synthesiser. We developed a method to represent rules for musical composition as quantum circuits. We claim that such musical rules are quantum native: they are naturally encodable in the amplitudes of quantum states. To evaluate a rule to generate a subsequent event, the system builds the respective quantum circuit dynamically and measures it. After a brief discussion about the vocal synthesis methods that we have been experimenting with, the paper introduces our novel generative music method through a practical example. The paper shows some experiments and concludes with a discussion about harnessing the creative potential of the system.","PeriodicalId":54937,"journal":{"name":"International Journal of Unconventional Computing","volume":"3 1","pages":"303-331"},"PeriodicalIF":0.7000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Unconventional Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.08225","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a system that learns to sing new tunes by listening to examples. It extracts sequencing rules from input music and uses these rules to generate new tunes, which are sung by a vocal synthesiser. We developed a method to represent rules for musical composition as quantum circuits. We claim that such musical rules are quantum native: they are naturally encodable in the amplitudes of quantum states. To evaluate a rule to generate a subsequent event, the system builds the respective quantum circuit dynamically and measures it. After a brief discussion about the vocal synthesis methods that we have been experimenting with, the paper introduces our novel generative music method through a practical example. The paper shows some experiments and concludes with a discussion about harnessing the creative potential of the system.
期刊介绍:
The International Journal of Unconventional Computing offers the opportunity for rapid publication of theoretical and experimental results in non-classical computing. Specific topics include but are not limited to:
physics of computation (e.g. conservative logic, thermodynamics of computation, reversible computing, quantum computing, collision-based computing with solitons, optical logic)
chemical computing (e.g. implementation of logical functions in chemical systems, image processing and pattern recognition in reaction-diffusion chemical systems and networks of chemical reactors)
bio-molecular computing (e.g. conformation based, information processing in molecular arrays, molecular memory)
cellular automata as models of massively parallel computing
complexity (e.g. computational complexity of non-standard computer architectures; theory of amorphous computing; artificial chemistry)
logics of unconventional computing (e.g. logical systems derived from space-time behavior of natural systems; non-classical logics; logical reasoning in physical, chemical and biological systems)
smart actuators (e.g. molecular machines incorporating information processing, intelligent arrays of actuators)
novel hardware systems (e.g. cellular automata VLSIs, functional neural chips)
mechanical computing (e.g. micromechanical encryption, computing in nanomachines, physical limits to mechanical computation).