Synthesis of TiN/N-doped TiO2 composite films as visible light active photocatalyst

Glenson R. Panghulan, M. Vasquez, Y. Edañol, N. Chanlek, L. Payawan
{"title":"Synthesis of TiN/N-doped TiO2 composite films as visible light active photocatalyst","authors":"Glenson R. Panghulan, M. Vasquez, Y. Edañol, N. Chanlek, L. Payawan","doi":"10.1116/6.0000304","DOIUrl":null,"url":null,"abstract":"Titanium nitride/nitrogen-doped titanium oxide (TiN/N-doped TiO 2) composite films were synthesized for visible light photodegradation applications. Thin films of TiN were sputter-deposited on precleaned glass substrates in an admixture of argon and nitrogen gases. The grown TiN films were subsequently oxidized in air at 350  °C at 15, 30, and 60 min. Raman spectral analysis revealed the formation of TiO 2 with anatase structure at 15 min and transitioned to the rutile structure at longer oxidation times. X-ray photoelectron spectral analysis revealed the formation of N-doped TiO 2 from the oxidized Ti. Visible light-induced photodegradation of methylene blue as test analyte showed 30% removal efficiency after exposure to visible light after 2.5 h. The highest degradation efficiency was observed when the anatase phase of TiO 2 is the dominant phase in the film. Moreover, N-doping realized the visible light sensitivity of TiO 2. This makes the composite film ideal for solar light-driven photodegradation of organic contaminants in wastewater.","PeriodicalId":17652,"journal":{"name":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0000304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Titanium nitride/nitrogen-doped titanium oxide (TiN/N-doped TiO 2) composite films were synthesized for visible light photodegradation applications. Thin films of TiN were sputter-deposited on precleaned glass substrates in an admixture of argon and nitrogen gases. The grown TiN films were subsequently oxidized in air at 350  °C at 15, 30, and 60 min. Raman spectral analysis revealed the formation of TiO 2 with anatase structure at 15 min and transitioned to the rutile structure at longer oxidation times. X-ray photoelectron spectral analysis revealed the formation of N-doped TiO 2 from the oxidized Ti. Visible light-induced photodegradation of methylene blue as test analyte showed 30% removal efficiency after exposure to visible light after 2.5 h. The highest degradation efficiency was observed when the anatase phase of TiO 2 is the dominant phase in the film. Moreover, N-doping realized the visible light sensitivity of TiO 2. This makes the composite film ideal for solar light-driven photodegradation of organic contaminants in wastewater.
作为可见光活性光催化剂的TiN/ n掺杂TiO2复合薄膜的合成
合成了用于可见光降解的氮化钛/氮掺杂氧化钛(TiN/ n掺杂tio2)复合薄膜。在氩气和氮气的混合物中溅射沉积TiN薄膜在预清洗的玻璃衬底上。生长的TiN薄膜随后在空气中350°C、15、30和60分钟氧化。拉曼光谱分析表明,tio2在15min时形成锐钛矿结构,在较长氧化时间后转变为金红石结构。x射线光电子能谱分析表明,氧化钛生成n掺杂tio2。实验分析物亚甲基蓝暴露于可见光下2.5 h后,可见光诱导的光降解效率为30%。当tio2以锐钛矿相为主时,降解效率最高。此外,n掺杂实现了tio2的可见光敏感性。这使得复合膜非常适合太阳能驱动光降解废水中的有机污染物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信