{"title":"Molecular characterization of Brassica genebank germplasm confirms taxonomic identity and reveals low levels and source of taxonomic errors","authors":"Erica M. Steadman, K. Whitehouse, S. Norton","doi":"10.1017/s1479262123000035","DOIUrl":null,"url":null,"abstract":"\n Crop germplasm conserved in genebanks, are a fundamental resource of genetic diversity for crop improvement activities, underpinning future food security and sustainable agricultural practices. However, taxonomic errors in genebank germplasm (due to misclassification, contamination and poor data collation) restrict the effective use of this material for correct purpose. Earlier studies investigating species genetic diversity using genebank germplasm, have shown varying levels of taxonomic error within the Brassica species. In response to this reported taxonomic error of global collections, together with the availability of a multiplex PCR (MPCR) marker, targeting the specific chromosomes (A, B and C) of the six Brassica species in U's triangle, this study was undertaken to confirm the taxonomic identity of accessions within the Australian Grains Genebank's (AGG) long-term Brassica collection. A total of 5161 accessions were analysed with MPCR for taxonomic identification, of which, 4842 (93.8%) were confirmed to be consistent (correct) with their labelled taxonomy, while the remaining 319 (6.2%) were identified as taxonomically inconsistent (in-error). Through the evaluation of earlier regeneration and original seed of the error accessions with MPCR, we determined that 80.9% of the taxonomic errors were traced back to the original seed, while 19.1% of errors were the result of genebank seed regeneration handling practices. Results from this study directly enhance information of the AGG Brassica collection and shape directions for distribution, acquisition and regeneration practices within the AGG and potentially other global genebanks, which will facilitate in a more effective use of these valuable genetic resources by researchers and breeders.","PeriodicalId":20252,"journal":{"name":"Plant Genetic Resources: Characterization and Utilization","volume":"18 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genetic Resources: Characterization and Utilization","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/s1479262123000035","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Crop germplasm conserved in genebanks, are a fundamental resource of genetic diversity for crop improvement activities, underpinning future food security and sustainable agricultural practices. However, taxonomic errors in genebank germplasm (due to misclassification, contamination and poor data collation) restrict the effective use of this material for correct purpose. Earlier studies investigating species genetic diversity using genebank germplasm, have shown varying levels of taxonomic error within the Brassica species. In response to this reported taxonomic error of global collections, together with the availability of a multiplex PCR (MPCR) marker, targeting the specific chromosomes (A, B and C) of the six Brassica species in U's triangle, this study was undertaken to confirm the taxonomic identity of accessions within the Australian Grains Genebank's (AGG) long-term Brassica collection. A total of 5161 accessions were analysed with MPCR for taxonomic identification, of which, 4842 (93.8%) were confirmed to be consistent (correct) with their labelled taxonomy, while the remaining 319 (6.2%) were identified as taxonomically inconsistent (in-error). Through the evaluation of earlier regeneration and original seed of the error accessions with MPCR, we determined that 80.9% of the taxonomic errors were traced back to the original seed, while 19.1% of errors were the result of genebank seed regeneration handling practices. Results from this study directly enhance information of the AGG Brassica collection and shape directions for distribution, acquisition and regeneration practices within the AGG and potentially other global genebanks, which will facilitate in a more effective use of these valuable genetic resources by researchers and breeders.
期刊介绍:
Plant Genetic Resources is an international journal which provides a forum for describing the application of novel genomic technologies, as well as their integration with established techniques, towards the understanding of the genetic variation captured in both in situ and ex situ collections of crop and non-crop plants; and for the airing of wider issues relevant to plant germplasm conservation and utilisation. We particularly welcome multi-disciplinary approaches that incorporate both a technical and a socio-economic focus. Technical aspects can cover developments in technologies of potential or demonstrated relevance to the analysis of variation and diversity at the phenotypic and genotypic levels.