A. Asghar, Zhangwei Chen, Enaam A. Al-Harthi, J. Hakami, Muhammad Shahid Rashid, Hafeez Sultana, S. Hussain, Y. Javed, N. A. Shad, Mohd Imran
{"title":"High‐Performance Electrode Materials for Electrochemical Energy Storage Devices Based on Microrod‐Like Structures of Calcium Phosphate (Ca2P2O7)","authors":"A. Asghar, Zhangwei Chen, Enaam A. Al-Harthi, J. Hakami, Muhammad Shahid Rashid, Hafeez Sultana, S. Hussain, Y. Javed, N. A. Shad, Mohd Imran","doi":"10.1002/pssr.202300178","DOIUrl":null,"url":null,"abstract":"Herein, the hydrothermal method is used to synthesize microrod‐like morphology of calcium phosphate (Ca2P2O7). The prepared electrode manifests a high specific capacitance of 1174.5 Fg−1 and a specific capacity of 807.5 Cg−1 at a scan rate of 5 mV s−1. Finally, the potential supercapacitor electrode material shows a maximum power density of 1855.7 W kg−1 and an energy density of 55.23 Wh kg−1 at the current densities of 5 and 0.5 Ag−1, respectively with the three‐electrode system. While, the two‐electrode system exhibits a maximum power density of 1330.9 W kg−1 and an energy density of 11.7 Wh kg−1 at the current densities of 5 and 1 Ag−1, respectively. The electrode exhibits higher lifetime capacitance retention of 88.74% after 5000 cycles. The b value lies within the range of 0.68–1, which is suitable for both batteries and supercapacitors for transport application.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":"35 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (RRL) – Rapid Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssr.202300178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, the hydrothermal method is used to synthesize microrod‐like morphology of calcium phosphate (Ca2P2O7). The prepared electrode manifests a high specific capacitance of 1174.5 Fg−1 and a specific capacity of 807.5 Cg−1 at a scan rate of 5 mV s−1. Finally, the potential supercapacitor electrode material shows a maximum power density of 1855.7 W kg−1 and an energy density of 55.23 Wh kg−1 at the current densities of 5 and 0.5 Ag−1, respectively with the three‐electrode system. While, the two‐electrode system exhibits a maximum power density of 1330.9 W kg−1 and an energy density of 11.7 Wh kg−1 at the current densities of 5 and 1 Ag−1, respectively. The electrode exhibits higher lifetime capacitance retention of 88.74% after 5000 cycles. The b value lies within the range of 0.68–1, which is suitable for both batteries and supercapacitors for transport application.