Interpolation of multidimensional signals using the reduction of the dimension of parametric spaces of decision rules

M. Gashnikov
{"title":"Interpolation of multidimensional signals using the reduction of the dimension of parametric spaces of decision rules","authors":"M. Gashnikov","doi":"10.18287/1613-0073-2019-2391-31-40","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the interpolation of multidimensional signals problem. We develop adaptive interpolators that select the most appropriate interpolating function at each signal point. Parameterized decision rule selects the interpolating function based on local features at each signal point. We optimize the adaptive interpolator in the parameter space of this decision rule. For solving this optimization problem, we reduce the dimension of the parametric space of the decision rule. Dimension reduction is based on the parameterization of the ratio between local differences at each signal point. Then we optimize the adaptive interpolator in parametric space of reduced dimension. Computational experiments to investigate the effectiveness of an adaptive interpolator are conducted using real-world multidimensional signals. The proposed adaptive interpolator used as a part of the hierarchical compression method showed a gain of up to 51% in the size of the archive file compared to the smoothing interpolator.","PeriodicalId":10486,"journal":{"name":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/1613-0073-2019-2391-31-40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the interpolation of multidimensional signals problem. We develop adaptive interpolators that select the most appropriate interpolating function at each signal point. Parameterized decision rule selects the interpolating function based on local features at each signal point. We optimize the adaptive interpolator in the parameter space of this decision rule. For solving this optimization problem, we reduce the dimension of the parametric space of the decision rule. Dimension reduction is based on the parameterization of the ratio between local differences at each signal point. Then we optimize the adaptive interpolator in parametric space of reduced dimension. Computational experiments to investigate the effectiveness of an adaptive interpolator are conducted using real-world multidimensional signals. The proposed adaptive interpolator used as a part of the hierarchical compression method showed a gain of up to 51% in the size of the archive file compared to the smoothing interpolator.
利用决策规则的参数空间降维对多维信号进行插值
本文研究了多维信号的插值问题。我们开发了自适应插值器,在每个信号点选择最合适的插值函数。参数化决策规则根据每个信号点的局部特征选择插值函数。我们在该决策规则的参数空间中对自适应插值器进行了优化。为了解决这一优化问题,我们将决策规则的参数空间降维。降维是基于每个信号点的局部差值之比的参数化。然后在降维参数空间中对自适应插值器进行优化。计算实验研究了自适应插值器的有效性,使用现实世界的多维信号进行。所提出的自适应插值器作为分层压缩方法的一部分,与平滑插值器相比,存档文件的大小增加了51%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信